DOI QR코드

DOI QR Code

CO2 Adsorption in Metal-organic Frameworks

금속유기구조체를 이용한 이산화탄소 흡착 연구

  • Kim, Jun (Department of Chemical Engineering, Inha University) ;
  • Kim, Hee-Young (Department of Chemical Engineering, Inha University) ;
  • Ahn, Wha-Seung (Department of Chemical Engineering, Inha University)
  • 김준 (인하대학교 화학공학과) ;
  • 김희영 (인하대학교 화학공학과) ;
  • 안화승 (인하대학교 화학공학과)
  • Received : 2012.12.24
  • Accepted : 2013.01.20
  • Published : 2013.04.01

Abstract

Metal organic frameworks (MOFs) are a class of crystalline organic-inorganic hybrid compounds formed by coordination of metal clusters or ions with organic linkers. MOFs have recently attracted intense research interest due to their permanent porous structures, large surface areas and pore volume, high-dispersed metal species, and potential applications in gas adsorption, separation, and catalysis. $CO_2$ adsorption in MOFs has been investigated in two areas of $CO_2$ storage at high pressures and $CO_2$ adsorption at atmospheric pressure conditions. In this short review, $CO_2$ adsorption/separation results using MOFs conducted in our laboratory was explained in terms of four contributing effects; (1) coordinatively unsaturated open metal sites, (2) functionalization, (3) interpenetration/catenation, and (4) ion-exchange. Zeolitic imidazolate frameworks (ZIFs) and covalent organic frameworks (COFs) were also considered as a candidate material.

금속유기구조체(metal-organic frameworks, MOF)는 넓은 비표면적, 규칙적인 구조 및 높게 분산된 금속 성분 등 뛰어난 물리화학적 특성으로 인해 활발한 연구가 이뤄지고 있는 다공성 물질이며, 특히 가스의 흡착, 분리 매체로서 뛰어난 성능이 보고되고 있다. MOF를 이용한 온실가스 이산화탄소의 흡착 연구는 상온 고압 영역에서 이산화탄소 저장 공정과 상온 저압 영역에서 이산화탄소 흡착 공정의 두 범주로 나눌 수 있으며, MOF의 넓은 비표면적 외에도 (1) MOF의 빈 배위결합 자리, (2) MOF의 기능화, (3) MOF의 상호 침투 효과, 및 (4) 이온 교환 효과를 이용한 연구 결과가 보고되고 있다. MOF 물질들은 비교적 낮은 수분 및 열에 대한 안정성이 문제로 제기되고 있으며, 제올라이트 유사 구조체(zeolitic imidazolate frameworks, ZIF) 또는 유기 골격 구조체(covalent organic frameworks, COF) 물질의 이산화탄소 흡착 특성이 거론되고 있다. 본 소고에서는 MOF를 이용한 이산화탄소 흡착에 대한 최근의 연구 결과를 본 연구실의 실험 결과를 중심으로 간략히 소개하고자 한다.

Keywords

References

  1. Ciferno, J. P., Fout, T. E., Jones, A. P. and Murphy, J. T., "Capturing Carbon from Existing Coal Fired Power Plant," Chem. Eng. Prog., 105, 33-41(2009).
  2. Figueroa, J. D., Fout, T., Plasynski, S., McIlvried, H. and Srivastava, R. D., "Advances in $CO_2$ Capture Technology-The US Department of Energy's Carbon Sequestration Program," Int. J. Greenhouse Gas Control, 2, 9-20(2008). https://doi.org/10.1016/S1750-5836(07)00094-1
  3. ESRL, "ESRL's Global Monitoring Division, Trends in Atmo-spheric Carbon Dioxide," ESRL(2010).
  4. Wilson, E. J. and Gerard, D., "Carbon Capture and Sequestration: Integrating Technology, Monitoring, Regulation," Wiley, England (2007).
  5. Rackley, S. A., "Carbon Capture and Storage," Elsevier(2010).
  6. Yamasaki, A., "An Overview of $CO_2$ Mitigation Options for Global Warming-emphasizing $CO_2$ Sequestration Options," J. Chem. Eng. Jpn., 36, 361-375(2003). https://doi.org/10.1252/jcej.36.361
  7. Yeh, J. T., Resnik, K. P., Rygle, K. and Pennline, H. W., "Semibatch Absorption and Regeneration Studies for $CO_2$ Capture by Aqueous Ammonia," Fuel Process. Technol., 86, 1533-1546(2005). https://doi.org/10.1016/j.fuproc.2005.01.015
  8. Xu, X., Song, C. S., Andresen, J. M., Miller, B. G. and Scaroni, A. W., "Novel Polyethylenimine Modified Mesoporous Molecular Sieve of MCM-41 Type as High-capacity Adsorbent for $CO_2$ Capture," Energy Fuels, 16, 1463-1469(2002). https://doi.org/10.1021/ef020058u
  9. Yang, S. T., Kim, J. and Ahn, W. S., "$CO_2$ Adsorption Over Ionexchanged Zeolite Beta with Alkali and Alkaline Earth Metal Ions," Micropor. Mesopor. Mater., 135, 90-94(2010). https://doi.org/10.1016/j.micromeso.2010.06.015
  10. Yang, S. T., Kim, J. Y., Kim, J. and Ahn, W. S., "$CO_2$ Capture over Amine-functionalized MCM-22, MCM-36 and ITQ-2," Fuel, 97, 435-442(2012). https://doi.org/10.1016/j.fuel.2012.03.034
  11. Chen, C., Kim, J. and Ahn, W. S., "Efficient Carbon Dioxide Capture over a Nitrogen-rich Carbon Having a Hierarchical Micromesopore Structure," Fuel, 95, 360-364(2012). https://doi.org/10.1016/j.fuel.2011.10.072
  12. Youn, H. K., Kim, J., Chandrasekar, G., Jin, H. and Ahn, W. S., "High Pressure Carbon Dioxide Adsorption on Nanoporous Carbons Prepared by Zeolite Y Templating," Mater. Lett., 65, 1772-1774(2011). https://doi.org/10.1016/j.matlet.2011.03.039
  13. Kim, S. N., Son, W. J., Choi, J. S. and Ahn, W. S., "$CO_2$ Adsorption Using Amine-functionalized Mesoporous Silica Prepared Via Anionic Surfactant-mediated Synthesis," Micropor. Mesopor. Mater., 115, 497-503(2008). https://doi.org/10.1016/j.micromeso.2008.02.025
  14. Chen, C., Yang, S. T., Ahn, W. S. and Ryoo, R., "Amine-impreg- Nated Silica Monolith with a Hierarchical Pore Structure: Enhancement of $CO_2$ Capture Capacity," Chem. Commun., 3627-3629(2009).
  15. Chen, C., Yang, S. T. and Ahn, W. S., "Calcium Oxide as High Temperature $CO_2$ Sorbent: Effect of Textural Properties," Mater. Lett., 75, 140-142(2012). https://doi.org/10.1016/j.matlet.2012.02.015
  16. Chue, K. T., Kim, J. N., Yoo, Y. J., Cho, S. H. and Yang, R. T., "Comparison of Activated Carbon and Zeolite 13X for $CO_2$ Recovery from Flue Gas by Pressure Swing Adsorption," Ind. Eng. Chem. Res., 34, 591-598(1995). https://doi.org/10.1021/ie00041a020
  17. Diaz, E., Munoz, E., Vega, A. and Ordonez, S., "Enhancement of the $CO_2$ Retention Capacity of X-zeolites by Na- and Cs-Treatments," Chemosphere, 70, 1375-1382(2008). https://doi.org/10.1016/j.chemosphere.2007.09.034
  18. Eddaoudi, M., Moler, D. B. and Li, H., "Modular Chemistry: Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal-organic Carboxylate Frameworks," Acc. Chem. Res., 34, 319-330(2001). https://doi.org/10.1021/ar000034b
  19. Tranchemontagne, D. J., Mendoza-Cortes, J. L., O'Keeffe, M. and Yaghi, O. M., "Secondary Building Units, Nets and Bonding in the Chemistry of Metal-organic Frameworks," Chem. Soc. Rev., 38, 1257-1283(2009). https://doi.org/10.1039/b817735j
  20. Long, J. R. and Yaghi, O. M., "The Pervasive Chemistry of Metalorganic Frameworks," Chem. Soc. Rev., 38, 1213-1214(2009). https://doi.org/10.1039/b903811f
  21. Rowsell, J. L. C., Spencer, E. C., Eckert, J., Howard, J. A. K. and Yaghi, O. M., "Gas Adsorption Sites in a Large-pore Metalorganic Framework," Science, 309, 1350-1354(2005). https://doi.org/10.1126/science.1113247
  22. Li, H. L., Eddaoudi, M., O'Keeffe, M. and Yaghi, O. M., "Design and Synthesis of An Exceptionally Stable and Highly Porous Metal-organic Framework," Nature, 402, 276-279(1999). https://doi.org/10.1038/46248
  23. Zhao, D., Yuan, D. Q., Sun, D. F. and Zhou, H. C., "Stabilization of Metal-organic Frameworks with High Surface Areas by the Incorporation of Mesocavities with Microwindows," J. Am. Chem. Soc., 131, 9186-9188(2009). https://doi.org/10.1021/ja901109t
  24. Yuan, D., Zhao, D., Sun, D. and Zhou, H. C., "An Isoreticular Series of Metal-organic Frameworks with Dendritic Hexacarboxylate Ligands and Exceptionally High Gas-uptake Capacity," Angew. Chem., Int. Ed., 49, 5357-5361(2010). https://doi.org/10.1002/anie.201001009
  25. Wang, Z. Q. and Cohen, S. M., "Postsynthetic Modification of Metal-organic Frameworks". Chem. Soc. Rev., 38, 1315-1329(2009). https://doi.org/10.1039/b802258p
  26. Li, J. R., Ma, Y., McCarthy, M. C., Sculley, J., Yu, J., Jeong, H. C., Balbuena, P. B. and Zhou, H. C., "Carbon Dioxide Capture-related Gas Adsorption and Separation in Metal-organic Frameworks," Coord. Chem. Rev., 255, 1791-1823(2011). https://doi.org/10.1016/j.ccr.2011.02.012
  27. Liu, J., Thallapally, P. K., McGrail, B. P., Brown, D. R. and Liu, J., "Progress in Adsorption-based $CO_2$ Capture by Metal-organic Frameworks," Chem. Soc. Rev., 41, 2308-2322(2012). https://doi.org/10.1039/c1cs15221a
  28. Li, J. R., Kuppler, R. J. and Zhou, H. C., "Selective Gas Adsorption and Separation in Metal-organic Frameworks," Chem. Soc. Rev., 38, 1477-1504(2009). https://doi.org/10.1039/b802426j
  29. Eddaoudi, M., Kim, J., Rosi, N. L., Vodak, D. T., Wachter, J., O'Keeffe, M. and Yaghi, O. M., "Systematic Design of Pore Size and Functionality in Isoreticular Metal-organic Frameworks and Application in Methane Storage," Science, 295, 469-472(2002). https://doi.org/10.1126/science.1067208
  30. Rosi, N. L., Eckert, J., Eddaoudi, M., Vodak, D. T., Kim, J., O'Keeffe, M. and Yaghi, O. M., "Hydrogen Storage in Microporous Metal-organic Frameworks," Science, 300, 1127-1129(2003). https://doi.org/10.1126/science.1083440
  31. Choi, J. S., Son, W. J., Kim, J. and Ahn, W. S., "Metal-organic Framework MOF-5 Prepared by Microwave Heating: Factors to be Considered," Micropor. Mesopor. Mater., 116, 727-731(2008). https://doi.org/10.1016/j.micromeso.2008.04.033
  32. Jhung, S. H., Lee, J. H., Yoon, J. W., Serre, C., Ferey, G. and Chang, J. S., "Microwave Synthesis of Chromium Terephthalate MIL-101 and Its Benzene Sorption Ability," Adv. Mater., 19, 121-124(2007). https://doi.org/10.1002/adma.200601604
  33. Mueller, U., Schubert, M., Teich, F., Puetter, H., Schierle-Arndt, K. and Pastre, J., "Metal-organic Frameworks-prospective Industrial Applications," J. Mater. Chem., 16, 626-636(2006). https://doi.org/10.1039/b511962f
  34. Friseiae, T., Reid, D. G., Halasz, I., Stein, R. S., Dinnebier, R. E. and Duer, M. J., "Ion- and Liquid-assisted Grinding: Improved Mechanochemical Synthesis of Metal-organic Frameworks Reveals Salt Inclusion and Anion Templating," Angew. Chem. Int. Ed., 49, 712-715(2010). https://doi.org/10.1002/anie.200906583
  35. Klimakow, M., Klobes, P., Thuunemann, A. F., Rademann, K. and Emmerling, F., "Mechanochemical Synthesis of Metal-organic Frameworks: A Fast and Facile Approach Toward Quantitative Yields and High Specific Surface Areas," Chem. Mater., 22, 5216-5221(2010). https://doi.org/10.1021/cm1012119
  36. Son, W. J. Kim, J., Kim, J. and Ahn, W. S., "Sonochemical Synthesis of MOF-5," Chem. Commun., 6336-6338(2008).
  37. Jung, D. W., Yang, D. A., Kim, J., Kim, J. and Ahn, W. S., "Facile Synthesis of MOF-177 by a Sonochemical Method Using 1-methyl- 2-pyrrolidinone as a Solvent," Dalton Trans., 39, 2883-2887(2010). https://doi.org/10.1039/b925088c
  38. Kim, J., Bhattacharjee, S., Jeong, K. E., Jeong, S. Y. and Ahn, W. S., "Selective Oxidation of Tetralin over a Chromium Terephthalate Metal Organic Framework, MIL-101," Chem. Commun., 3904-3906(2009).
  39. Lee, J. Y., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S. B. T. and Hupp, J. T., "Metal-organic Framework Materials as Catalysts," Chem. Soc. Rev., 38, 1450-1459(2009). https://doi.org/10.1039/b807080f
  40. Horcajada, P., Chalati, T., Serre, C., Gillet, B., Sebrie, C., Baati, T., Eubank, J.F., Heurtaux, D., Clayette, P., Kreuz, C., Chang, J. S., Hwang, Y. K., Marsaud, V., Bories, P., Cynober, L., Gil, S., Ferey, G., Couvreur, P. and Gref, R., "Porous Metal-organicframework Nanoscale Carriers as a Potential Platform for Drug Delivery and Imaging," Nat. Mater., 9, 172-178(2010). https://doi.org/10.1038/nmat2608
  41. Achmann, S., Hagen, G., Kita, J., Malkowsky, I. M., Kiener, C. and Moos, R., "Metal-organic Frameworks for Sensing Applications in the Gas Phase," Sensors, 9, 1574-1589(2009). https://doi.org/10.3390/s90301574
  42. Liu, B., Shioyama, H., Akita, T. and Xu, Q., "Metal-organic Framework as a Template for Porous Carbon Synthesis," J. Am. Chem. Soc., 130, 5390-5391(2008). https://doi.org/10.1021/ja7106146
  43. Yaghi, O. M. and Li, Q., "Reticular Chemistry and Metal-organic Frameworks for Clean Energy," MRS Bull., 34, 682-690(2009). https://doi.org/10.1557/mrs2009.180
  44. Murray, L. J., Dinc, M. and Long, J. R., "Hydrogen Storage in Metal-organic Frameworks," Chem. Soc. Rev., 38, 1294-1314(2009). https://doi.org/10.1039/b802256a
  45. Lee, J. Y., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S. T. and Hupp, J. T., "Metal-organic Framework Materials As Catalysts," Chem. Soc. Rev., 38, 1450-1459(2009). https://doi.org/10.1039/b807080f
  46. Zou, Y. Q., Abdel-Fattah, A. I., Xu, H. W., Zhao, Y. S. and Hickmott, D. D., "Storage and Separation Applications of Nanoporous Metal-organic Frameworks," Cryst.Eng Comm, 12, 1337-1353(2010). https://doi.org/10.1039/b909643b
  47. Ferey, G., Serre, C., Devic, T., Maurin, G., Jobic, H., Llewellyn, P. L., Weireld, D. G., Vimont, A., Daturif, M. and Chang, J. S., "Why Hybrid Porous Solids Capture Greenhouse Gases?," Chem. Soc. Rev., 40, 550-562(2011). https://doi.org/10.1039/c0cs00040j
  48. Millward, A. R. and Yaghi, O. M., "Metal-organic Frameworks with Exceptionally High Capacity for Storage of Carbon Dioxide at Room Temperature," J. Am. Chem. Soc., 127, 17998-1799(2005). https://doi.org/10.1021/ja0570032
  49. Mu, B., Schoenecker, P. M. and Walton, K. S., "Gas Adsorption Study on Mesoporous Metal-organic Framework UMCM-1," J. Phys. Chem. C, 114, 6464-6471(2010). https://doi.org/10.1021/jp906417z
  50. Bourrelly, S., Llewellyn, P. L., Serre, C., Millange, F., Loiseau, T. and Ferey, G., "Different Adsorption Behaviors of Methane and Carbon Dioxide in the Isotypic Nanoporous Metal Terephthalates MIL-53 and MIL-47," J. Am. Chem. Soc., 127, 13519-13521(2005). https://doi.org/10.1021/ja054668v
  51. Llewellyn, P. L., Bourrelly, S., Serre, C., Vimont, A., Daturi, M. and Hamon, L., "High Uptakes of $CO_2$ and $CH_4$ in Mesoporous Metals Organic Frameworks MIL-100 and MIL-101," Langmuir, 24, 7245-7250(2008). https://doi.org/10.1021/la800227x
  52. Furukawa, H., Ko, N., Go, Y. B., Aratani, N., Choi, S. B., Choi, E., Yazaydin, A. O., Snurr, R. Q., O'Keeffe, M., Kim, J. and Yaghi, O. M., "Ultrahigh Porosity in Metal-organic Frameworks," Science, 329, 424-428(2010). https://doi.org/10.1126/science.1192160
  53. Arstad, B., Fjellvag, H., Kongshaug, K. O., Swang, O. and Blom, R., "Amine Functionalised Metal Organic Frameworks (MOFs) as Adsorbents for Carbon Dioxide," Adsorption, 14, 755-762(2008). https://doi.org/10.1007/s10450-008-9137-6
  54. Surble, S., Millange, F., Serre, C., Duren, T., Latroche, M., Bourrelly, S., Llewellyn, P. L. and Ferey, G., "Synthesis of MIL-102, a Chromium Carboxylate Metal-organic Framework, with Gas Sorption Analysis," J. Am. Chem. Soc., 128, 14889-14896(2006). https://doi.org/10.1021/ja064343u
  55. Serre, C., Millange, F., Thouvenot, C., Nogues, M., Marsolier, G., Louer, D. and Ferey, G., Very Large Breathing Effect in the First Nanoporous Chromium (III)-based Solids: MIL-53 or $CrIII(OH){\cdot}{\lbrace}O_2C-C_6H_4-CO_2{\rbrace}{\cdot}{\lbrace}HO_2C-C_6H_4-CO_2H{\rbrace}_x\;H_2O$," J. Am. Chem. Soc., 124, 13519-13526(2002). https://doi.org/10.1021/ja0276974
  56. Loiseau, T., Serre, C., Huguenard, C., Fink, G., Taulelle, F., Henry, M., Bataille, T. and Ferey, G., "Rationale for the Large Breathing of the Porous Aluminum Terephthalate (MIL-53) Upon Hydration," Chem. Eur. J., 10, 1373-1382(2004). https://doi.org/10.1002/chem.200305413
  57. Kim, J., Kim, W. Y. and Ahn, W. S., "Amine-functionalized MIL- 53(Al) for $CO_2/N_2$ Separation: Effect of Textural Properties," Fuel, 102, 574-579(2012). https://doi.org/10.1016/j.fuel.2012.06.016
  58. Couck, S., Denayer, J. F. M., Baron, G. V., Remy, T., Gascon, J. and Kapteijn, F., "An Amine Functionalized MIL-53 Metal-organic Framework with Large Separation Power for $CO_2$ and $CH_4$," J. Am. Chem. Soc., 131, 6326-6327(2009). https://doi.org/10.1021/ja900555r
  59. Liu, B. and Smit, B., "Comparative Molecular Simulation Study of $CO_2/N_2$ and $CH_4/N_2$ Separation in Zeolites and Metal-organic Frameworks," Langmuir, 25, 5918-5926(2009). https://doi.org/10.1021/la900823d
  60. Wu, D., Xu, Q., Liu, D. H. and Zhong, C. L., "Exceptional $CO_2$ Capture Capability and Molecular-level Segregation in a Li-Modified Metal-organic Framework," J. Phys. Chem. C, 114, 16611-16617(2010). https://doi.org/10.1021/jp105899t
  61. Chen, Z. X., Xiang, S. C., Arman, H. D., Li, P., Tidrow, S., Zhao, D. Y. and Chen, B. L., "A Microporous Metal-organic Framework with Immobilized -OH Functional Groups Within the Pore Surfaces for Selective Gas Sorption," Eur. J. Inorg. Chem., 2010, 3745-3749(2010). https://doi.org/10.1002/ejic.201000349
  62. Cavenati, S., Grande, C. A. and Rodrigues, A. E., "Metal Organic Framework Adsorbent for Biogas Upgrading," Ind. Eng. Chem. Res., 47, 6333-6335(2008). https://doi.org/10.1021/ie8005269
  63. Martin-Calvo, A., Garcia-Perez, E., Castillo, J. M. and Calero, S., "Molecular Simulations for Adsorption and Separation of Natural Gas in IRMOF-1 and Cu-BTC Metal-organic Frameworks," Phys. Chem. Chem. Phys., 10, 7085-7091(2008). https://doi.org/10.1039/b807470d
  64. Bao, Z. B., Yu, L. A., Ren, Q. L., Lu, X. Y. and Deng, S. G., "Adsorption of $CO_2$ and $CH_4$ on a Magnesium-based Metal Organic Framework," J. Colloid Interface Sci., 353, 549-556(2011). https://doi.org/10.1016/j.jcis.2010.09.065
  65. Babarao, R. and Jiang, J., "Unprecedentedly High Selective Adsorption of Gas Mixtures in rho-zeolite-like Metal-organic Framework: a Molecular Simulation Study," J. Am. Chem. Soc., 131, 11417-11425(2009). https://doi.org/10.1021/ja901061j
  66. Xu, Q., Liu, D. H., Yang, Q. Y., Zhong, C. L. and Mi, J. G., "Limodified Metal-organic Frameworks for $CO_2/CH_4$ Separation: a Route to Achieving High Adsorption Selectivity," J. Mater. Chem., 20, 706-714(2010). https://doi.org/10.1039/b912407a
  67. Cho, H. Y., Yang, D. A., Kim, J., Jeong, S. Y. and Ahn, W. S., "$CO_2$ Adsorption and Catalytic Application of Co-MOF-74 Synthesized by Microwave Heating," Catal. Today, 185, 35-40(2012). https://doi.org/10.1016/j.cattod.2011.08.019
  68. Kim, S. N., Yang, S. T., Kim, J., Park, J. E. and Ahn, W. S., "Post-synthesis Functionalization of MIL-101 Using Diethylenetriamine: a Study on Adsorption and Catalysis," CrystEngComm, 14, 4142-4147(2012). https://doi.org/10.1039/c2ce06608d
  69. Huang, Y., Qin, W., Li, Z. and Li, Y., "Enhanced Stability and $CO_2$ Affinity of a UiO-66 Type Metal-organic Framework Decorated with Dimethyl Groups," Dalton Trans., 41, 9283-9285 (2012). https://doi.org/10.1039/c2dt30950e
  70. Liang, Z., Marshall, M. and Chaffee, A. L., "$CO_2$ Adsorption Based Separation by Metal Organic Framework (Cu-BTC) Versus Zeolite (13X)," Energy Fuels, 23, 2785-2789(2009). https://doi.org/10.1021/ef800938e
  71. Zhao, Z., Li, Z. and Lin, Y. S., "Adsorption and Diffusion of Carbon Dioxide on Metal-organic Framework (MOF-5)," Ind. Eng. Chem. Res., 48, 10015-10020(2009). https://doi.org/10.1021/ie900665f
  72. Martin-Calvo, A., Garcia-Perez, E., Castillo, J. M. and Calero, S., "Molecular Simulations for Adsorption and Separation of Natural Gas in IRMOF-1 and Cu-BTC Metal-organic Frameworks", Phys. Chem. Chem. Phys., 10, 7085-7091(2008). https://doi.org/10.1039/b807470d
  73. Schlichte, K., Kratzke, T. and Kaskel, S., "Improved Synthesis, Thermal Stability and Catalytic Properties of the Metal-organic Framework Compound $Cu_3(BTC)_2$," Micropor. Mesopor. Mater., 73, 81-88(2004). https://doi.org/10.1016/j.micromeso.2003.12.027
  74. Yang, D. A., Cho, H. Y., Kim, J., Yang, S. T. and Ahn, W. S., "$CO_2$ Capture and Conversion Using Mg-MOF-74 Prepared by a Sonochemical Method," Energy Environ. Sci., 5, 6465-6473 (2012). https://doi.org/10.1039/c1ee02234b
  75. Chui, S. S. Y., Lo, S. M. F., Charmant, J. P. H., Orpen, A. G. and Williams, I. D., "A Chemically Functionalizable Nanoporous Material $[Cu_3(TMA)_2(H_2O)_3]_n$," Science, 283, 1148-1150(1999). https://doi.org/10.1126/science.283.5405.1148
  76. Kim, J., Kim, S. H., Yang, S. T. and Ahn, W. S., "Bench-scale Preparation of $Cu_3(BTC)_2$ by Ethanol Reflux: Synthesis Optimization and Adsorption/catalytic Applications," Micropor. Mesopor. Mater., 161, 48-55(2012). https://doi.org/10.1016/j.micromeso.2012.05.021
  77. Caskey, S. R., Wong-Foy, A. G. and Matzger, A. J., "Dramatic Tuning of Carbon Dioxide Uptake Via Metal Substitution in a Coordination Polymer with Cylindrical Pores," J. Am. Chem. Soc., 130, 10870-10871(2008). https://doi.org/10.1021/ja8036096
  78. Dietzel, P. D. C., Morita, Y., Blom R. and Fjellvag, H., "An in Situ High-temperature Single-crystal Investigation of a Dehydrated Metal-organic Framework Compound and Field-induced Magnetization of One-dimensional Metal-oxygen Chains," Angew. Chem. Int. Ed., 44, 6354-6358(2005). https://doi.org/10.1002/anie.200501508
  79. Dietzel, P. D. C., Georgiev, P. A., Eckert, J., Blom, R., Strässle, T. and Unruh, T., "Interaction of Hydrogen with Accessible Metal Sites in the Metal-organic Frameworks $M_2(dhtp)$ (CPO-27-M; M=Ni, Co, Mg)," Chem. Commun., 46, 4962-4964(2010). https://doi.org/10.1039/c0cc00091d
  80. Liu, J., Wang, Y., Benin, A. I., Jakubczak, P., Willis, R. R. and LeVan, M. D., "$CO_2/H_2O$ Adsorption Equilibrium and Rates on Metal-organic Frameworks: HKUST-1 and Ni/DOBDC," Langmuir, 26, 14301-14307(2010). https://doi.org/10.1021/la102359q
  81. Hwang, Y. K., Hong, D. Y., Chang, J. S., Jhung, S. H., Seo, Y. K., Kim, J., Vimont, A., Daturi, M., Serre, C. and Férey, G., "Amine Grafting on Coordinatively Unsaturated Metal Centers of MOFs: Consequences for Catalysis and Metal Encapsulation," Angew. Chem. Int. Ed., 47, 4144-4148(2008). https://doi.org/10.1002/anie.200705998
  82. Kim, J., Yang, S. T., Choi, S. B., Sim, J., Kim, J. and Ahn, W. S., "Control of Catenation in CuTATB-n Metal-organic Frameworks by Sonochemical Synthesis and Its Effect on $CO_2$ Adsorption," J. Mater. Chem., 21, 3070-3076(2011). https://doi.org/10.1039/c0jm03318a
  83. Zhang, J. J., Wojtas, L., Larsen, R. W., Eddaoudi, M. and Zaworotko, M. J., "Temperature and Concentration Control Over Interpenetration in a Metal-organic Material," J. Am. Chem. Soc., 131, 17040-17041(2009). https://doi.org/10.1021/ja906911q
  84. Ma, S., Sun, D., Ambrogio, M., Fillinger, J. A., Parkin, S. and Zhou, H. C., "Framework-catenation Isomerism in Metal-organic Frameworks and Its Impact on Hydrogen Uptake," J. Am. Chem. Soc., 129, 1858-1859(2007). https://doi.org/10.1021/ja067435s
  85. Sun, D., Ma, S., Ke, Y., Collins, D. J. and Zhou, H. C., "An Interweaving MOF with High Hydrogen Uptake," J. Am. Chem. Soc., 128, 3896-3897(2006). https://doi.org/10.1021/ja058777l
  86. Liu, B., Yang, Q., Xue, C., Zhong, C., Chen, B. and Smit, B., "Enhanced Adsorption Selectivity of Hydrogen/methane Mixtures in Metalorganic Frameworks with Interpenetration: A Molecular Simulation Study," J. Phys. Chem. C, 112, 9854-9860(2008).
  87. Keskin, S. and Sholl, D. S., "Efficient Methods for Screening of Metal Organic Framework Membranes for Gas Separations Using Atomically Detailed Models," Langmuir, 25, 11786-11795 (2009). https://doi.org/10.1021/la901438x
  88. Liu, Y., Kravtsov, V. C., Larsena, R. and Eddaoudi, M., "Molecular Building Blocks Approach to the Assembly of Zeolite-like Metal-organic Frameworks (ZMOFs) with Extra-large Cavities," Chem. Commun., 1488-1490(2006).
  89. Chen, C., Kim, J., Yang, D. A. and Ahn, W. S., "Carbon Dioxide Adsorption over Zeolite-like Metal Organic Frameworks (ZMOFs) Having a sod Topology: Structure and Ion-exchange Effect," Chem. Eng. J., 168, 1134-1139(2011). https://doi.org/10.1016/j.cej.2011.01.096
  90. Yang, C., Wang X. P. and Omary, M. A., "Fluorous Metalorganic Frameworks for High-density Gas Adsorption," J. Am. Chem. Soc., 129, 15454-15455(2007). https://doi.org/10.1021/ja0775265
  91. Cho, H. Y., Kim, J., Kim, S. N. and Ahn, W. S., "High yield 1-L Scale Synthesis of ZIF-8 Via a Sonochemical Route," Micropor. Mesopor. Mater., 169, 180-184(2013). https://doi.org/10.1016/j.micromeso.2012.11.012
  92. Park, K. S., Ni, Z., Cote, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., Chae, H. K., O'Keeffe, M. and Yaghi, O. M., "Exceptional Chemical and Thermal Stability of Zeolitic Imidazolate Frameworks," PNAS, 103, 10186-10191(2006). https://doi.org/10.1073/pnas.0602439103
  93. Banerjee, R., Phan, A., Wang, B., Knobler, C., Furukawa, C., O'Keeffe, M. and Yaghi, O. M., "High-throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to $CO_2$ Capture," Science, 319, 939-943(2008). https://doi.org/10.1126/science.1152516
  94. Cote, A. P., Benin, A. I., Ockwig, N. W., Matzger, A. J., O'Keeffe, M. and Yaghi, O. M., "Porous, Crystalline, Covalent Organic Frameworks," Science, 310, 1166-1170(2005). https://doi.org/10.1126/science.1120411
  95. Yang, S. T., Kim, J., Cho, H. Y., Kim, S. and Ahn, W. S., "Facile Synthesis of Covalent Organic Frameworks COF-1 and COF-5 by Sonochemical Method," RSC Adv., 2, 10179-10181(2012). https://doi.org/10.1039/c2ra21531d
  96. Campbell, N. L., Clowes, R., Ritchie L. K. and Cooper, A. I., "Rapid Microwave Synthesis and Purification of Porous Covalent Organic Frameworks," Chem. Mater., 21, 204-206(2009). https://doi.org/10.1021/cm802981m
  97. Uribe-Romo, F. J., Hunt, J. R., Furukawa, H., Klock, C., O'Keeffe, M. and Yaghi, O. M., "A Crystalline Imine-linked 3-D Porous Covalent Organic Framework," J. Am. Chem. Soc., 131, 4570-4571(2009). https://doi.org/10.1021/ja8096256
  98. Liu, Y., Liu, D., Yang, Q., Zhong C. and Mi, J., "A Comparative Study of Separation Performance of COFs and MOFs for $CH_4/CO_2/H_2$ Mixtures," Ind. Eng. Chem. Res., 49, 2902-2906(2010). https://doi.org/10.1021/ie901488f

Cited by

  1. CO2 Capture & Separation in Microporous Materials: A Comparison Between Porous Carbon and Flexible MOFs vol.28, pp.7, 2018, https://doi.org/10.3740/MRSK.2018.28.7.417
  2. 금속 유기 골격체를 활용한 사용 가능한(Usable capacity) 이산화탄소 포집 연구 vol.27, pp.4, 2013, https://doi.org/10.5855/energy.2018.27.4.080