DOI QR코드

DOI QR Code

Pharmacological Activities of Coffee Roasted from Fermented Green Coffee Beans with Fungal Mycelia in Solid-state Culture

진균류 균사체의 고체발효 커피생두로부터 조제한 원두커피의 생리활성

  • Shin, Ji-Young (R&D Center, CosisBio Corporation Limited) ;
  • Kim, Hoon (R&D Center, CosisBio Corporation Limited) ;
  • Kim, Dong-Gu (R&D Center, CosisBio Corporation Limited) ;
  • Baek, Gil-Hun (Dept. of Food Science and Technology, Chungbuk National University) ;
  • Jeong, Heon-Sang (Dept. of Food Science and Technology, Chungbuk National University) ;
  • Yu, Kwang-Won (Dept. of Food and Nutrition, Korea National University of Transportation)
  • 신지영 ((주)코시스바이오 기업부설연구소) ;
  • 김훈 ((주)코시스바이오 기업부설연구소) ;
  • 김동구 ((주)코시스바이오 기업부설연구소) ;
  • 백길훈 (충북대학교 식품공학과) ;
  • 정헌상 (충북대학교 식품공학과) ;
  • 유광원 (한국교통대학교 식품영양학과)
  • Received : 2012.11.08
  • Accepted : 2013.01.15
  • Published : 2013.03.31

Abstract

Green coffee beans (CB, Indonesian Mandheling) were fermented with three kinds of mushrooms (Phellinus linteus, PL; Hericium erinaceum, HE; Ganoderma lucidum, GL) or two kinds of mycelia from molds (Monascus purpureus, MP; Monascus ruber, MR) using solid-state culture to enhance physiological activity. After the roasting of fermented green coffee beans, roasted coffees were extracted with a hot-water decoction or 95% ethanol reflux. Yields from hot water extracts (HW, 17.7~25.3%) were higher than those from ethanolic extracts (EE, 9.5~12.2%). Hot-water extracts of roasted coffees from green coffee beans fermented with two molds (MP-CB-HW and MR-CB-HW) showed higher total polyphenols, flavonoids, and DPPH free radical scavenging activity than roasted coffees from non-fermented (CB-HW) or fermented green coffee beans with the three mycelia from mushrooms. MR-CB-HW also had the most potent macrophage stimulating and mitogenic activity (1.32 and 1.40-fold of CB-HW, respectively). In addition, MP-CB-EE and MR-CB-EE did not show any cytotoxicity to the RAW 264.7 cell at a concentration of $100{\mu}g/mL$, and these extracts significantly inhibited nitric oxide (NO) production from the LPS-stimulated RAW 264.7 cell line (38.6 and 37.0% of the LPS-treated group). Meanwhile, the chlorogenic acid concentrations of MP-CB-HW or MR-CB-HW highly increased (to 76.21 or $76.73{\mu}g/mL$, respectively), but caffeine concentrations were not affected by solid-state fermentation. In conclusion, the physiological activities of roasted coffees were enhanced by the solid-state culture of green coffee beans with M. purpureus or M. ruber, suggesting that these roasted coffees could possibly serve industrial applications as functional coffee beverages.

커피의 생리활성을 증진시키기 위해 고체발효를 이용하여 인도네시아산 Mandheling 커피생두에 3종의 버섯 균사체(Phellinus linteus, PL; Hericium erinaceum, HE; Ganoderma lucidum, GL) 및 2종의 홍국균 균사체(Monascus purpureus, MP; Monascus ruber, MR)를 배양하였다. 균사체-고체발효 커피생두를 로스팅하여 얻은 원두커피는 decoction법에 의한 열수추출물과 reflux에 의한 에탄올추출물로 조제하였는데, 열수추출물(HW, 수율 17.7~25.3%)은 에탄올추출물(EE, 9.5~12.2%)보다 더 높은 수율을 나타내었다. 2종의 홍국균 균사체-고체발효 커피생두로부터 조제된 원두커피 열수추출물(MP-CB-HW, MR-CB-HW)은 비발효 원두커피 또는 3종 버섯 균사체-고체발효 원두커피 열수추출물보다 높은 총 폴리페놀 및 플라보노이드 함량과 DPPH 자유라디칼 소거능을 나타내었다. 또한, 홍국균 균사체-고체발효 원두커피 중에서도 MR-CB-HW는 가장 높은 마크로파지 활성과 마이토젠 활성을 나타내었다(CB-HW의 1.32배와 1.40배). MP-CB-EE와 MR-CB-EE는 $100{\mu}g/mL$의 시료농도에서 세포에 대한 독성을 나타내지 않으면서도 LPS로 유도된 RAW 264.7 세포의 산화질소(NO)의 생성을 효과적으로 억제하였다(LPS 처리군의 38.6과 37.0%). 한편, 홍국균 균사체를 이용한 고체발효는 카페인 함량에 영향을 주지 않으면서 클로로겐산을 유의적으로 증가시켰다($76.21{\sim}76.73{\mu}g/mL$). 결론적으로 원두커피의 생리활성은 M. purpureus 또는 M. ruber와 커피생두의 고체발효에 의해서 증진되었으며 이러한 결과는 홍국균-고체발효 원두커피가 기능성 커피음료의 소재로 이용될 가능성을 제시하는 것으로 사료된다.

Keywords

References

  1. Brezova V, Slebodova A, Stasko A. 2009. Coffee as a source of antioxidants: An EPR study. Food Chem 114: 859-868. https://doi.org/10.1016/j.foodchem.2008.10.025
  2. Esquivel P, Jimenez VM. 2012. Functional properties of coffee and coffee by-products. Food Res Int 46: 488-495. https://doi.org/10.1016/j.foodres.2011.05.028
  3. Chu YF, Brown PH, Lyle BJ, Chen Y, Black RM, Williams CE, Lin YC, Hsu CW, Cheng IH. 2009. Roasted coffees high in lipophilic antioxidants and chlorogenic acid lactones are more neuroprotective than green coffees. J Agric Food Chem 57: 9801-9808. https://doi.org/10.1021/jf902095z
  4. Eskelinen MH, Ngandu T, Tuomilehto J, Soininen H, Kivipelto M. 2009. Midlife coffee and tea drinking and the risk of late-life dementia: a population-based CAIDE study. J Alzheimers Dis 16: 85-91. https://doi.org/10.3233/JAD-2009-0920
  5. Hu G, Bidel S, Jousilahti P, Antikainen R, Tuomilehto J. 2007. Coffee and tea consumption and the risk of Parkinson's disease. Mov Disord 22: 2242-2248. https://doi.org/10.1002/mds.21706
  6. Chu YF, Chen Y, Black RM, Brown PH, Lyle BJ, Liu RH, Ou B. 2011. Type 2 diabetes-related bioactivities of coffee: Assessment of antioxidant activity, NF-${\kappa}B$ inhibition, and stimulation of glucose uptake. Food Chem 124: 914-920. https://doi.org/10.1016/j.foodchem.2010.07.019
  7. Choi EY, Jang JY, Cho YO. 2010. Coffee intake can promote activity of antioxidant enzymes with increasing MDA level and decreasing HDL-cholesterol in physically trained rats. Nutr Res Pract 4: 283-289. https://doi.org/10.4162/nrp.2010.4.4.283
  8. Chou T. 1992. Wake up and smell the coffee. Caffeine, coffee and the medical consequences. West J Med 157: 544-553.
  9. Klatsky AL, Morton C, Udaltsova N, Friedman GD. 2006. Coffee, cirrhosis, and transaminase enzymes. Arch Intern Med 166: 1190-1195. https://doi.org/10.1001/archinte.166.11.1190
  10. Lopez-Garcia E, van Dam RM, Willett WC, Rimm EB, Manson JE, Stampfer MJ, Rexrode KM, Hu FB. 2006. Coffee consumption and coronary heart disease in men and women: a prospective cohort study. Circulation 113: 2045-2053. https://doi.org/10.1161/CIRCULATIONAHA.105.598664
  11. Mackay DC, Rollins JW. 1989. Caffeine and caffeinism. J R Nav Med Serv 75: 65-67.
  12. Yano K, Rhoads GG, Kagan A. 1977. Coffee, alcohol and risk of coronary heart disease among Japanese men living in Hawaii. N Engl J Med 297: 405-409. https://doi.org/10.1056/NEJM197708252970801
  13. LaCroix AZ, Mead LA, Liang KY, Thomas CB, Pearson TA. 1986. Coffee consumption and the incidence of coronary heart disease. N Engl J Med 315: 977-982. https://doi.org/10.1056/NEJM198610163151601
  14. Donahue RP, Orchard TJ, Stein EA, Kuller LH. 1987. Lack of an association between coffee consumption and lipoprotein lipids and apolipoproteins in young adults: the Beaver County Study. Prev Med 16: 796-802. https://doi.org/10.1016/0091-7435(87)90019-3
  15. de Roos B, Sawyer JK, Katan MB, Rudel LL. 1999. Validity of animal models for the cholesterol-raising effects of coffee diterpenes in human subjects. Proc Nutr Soc 58: 551-557. https://doi.org/10.1017/S0029665199000725
  16. Chang ST. 1999. Global impact of edible and medicinal mushrooms on human welfare in the 21st century: nongreen evolution. Int J Med Mushr 1: 1-7. https://doi.org/10.1615/IntJMedMushrooms.v1.i1.10
  17. Wasser SP. 2002. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol 60: 258-274. https://doi.org/10.1007/s00253-002-1076-7
  18. Yang BK, Park JB, Song CH. 2003. Hypolipidemic effect of an Exo-biopolymer produced from a submerged mycelial culture of Hericium erinaceus. Biosci Biotechnol Biochem 67: 1292-1298. https://doi.org/10.1271/bbb.67.1292
  19. Sanchez C. 2004. Modern aspects of mushroom culture technology. Appl Microbiol Biotechnol 64: 756-762. https://doi.org/10.1007/s00253-004-1569-7
  20. Velioglu YS, Mazza G, Cao L, Oomah BD. 1998. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J Agric Food Chem 46: 4113-4117. https://doi.org/10.1021/jf9801973
  21. Zhishen J, Mengcheng T, Jianming W. 1999. The determination of flavonoid content in mulberry and their scavenging effects on superoxide radicals. Food Chem 64: 555-559. https://doi.org/10.1016/S0308-8146(98)00102-2
  22. Cheung LM, Cheung PCK, Ooi VEC. 2003. Antioxidant activity and total phenolics of edible mushroom extracts. Food Chem 81: 249-255. https://doi.org/10.1016/S0308-8146(02)00419-3
  23. Conrad RE. 1981. Induction and collection of peritoneal exudates macrophages. In Manual of Macrophage Methodology. Herscowitz BH, Holden HT, Ballanti JA, Ghaffar A, eds. Marcel Dekker Incorporation, New York, NY, USA. p 5-11.
  24. Suzuki I, Tanaka H, Kinoshita A, Oikawa S, Osawa M, Yadomae T. 1990. Effect of orally administered ${\beta}$-glucan on macrophage function in mice. Int J Immunopharmacol 12: 675-684. https://doi.org/10.1016/0192-0561(90)90105-V
  25. Ishiyama M, Tominaga H, Shiga M, Sasamoto K, Ohkura Y, Ueno K. 1996. A combined assay of cell viability and in vitro cytotoxicity with a highly water-soluble tetrazolium salt, neutral red and crystal violet. Biol Pharm Bull 19: 1518-1520. https://doi.org/10.1248/bpb.19.1518
  26. Yu KW, Kiyohara H, Matsumoto T, Yang HC, Yamada H. 1998. Intestinal immune system modulating polysaccharides from rhizomes of Atractylodes lancea. Planta Med 64: 714-719. https://doi.org/10.1055/s-2006-957564
  27. Fox Jr JB. 1979. Kinetics and mechanisms of the Griess reaction. Anal Chem 51: 1493-1502. https://doi.org/10.1021/ac50045a032
  28. Yu KW, Kim YS, Shin KS, Kim JM, Suh HJ. 2005. Macrophage- stimulating activity of exo-biopolymer from cultured rice bran with Monascus pilosus. Appl Biochem Biotechnol 126: 35-48. https://doi.org/10.1007/s12010-005-0004-6
  29. Moncada S, Higgs EA. 1991. Endogenous nitric oxide: physiology, pathology and clinical relevance. Eur J Clin Invest 21: 361-374. https://doi.org/10.1111/j.1365-2362.1991.tb01383.x
  30. Claria J. 2003. Cyclooxygenase-2 biology. Curr Pharm Des 9: 2177-2190. https://doi.org/10.2174/1381612033454054
  31. Lowenstein CJ, Snyder SH. 1992. Nitric oxide, a novel biologic messenger. Cell 70: 705-707. https://doi.org/10.1016/0092-8674(92)90301-R
  32. De Maria CAB, Trugo LC, Moreira RFA, Petracco M. 1995. Simultaneous determination of total chlorogenic acid, trigonelline and caffeine in green coffee samples by high performance gel filtration chromatography. Food Chem 52: 447-449. https://doi.org/10.1016/0308-8146(95)93298-6
  33. Casal S, Oliveira MB, Ferreira MA. 1998. Development of an HPLC/diode-array detector method for simultaneous determination of trigonelline, nicotinic acid, and caffeine in coffee. J Liq Chromatogr Relat Technol 21: 3187-3195. https://doi.org/10.1080/10826079808001267
  34. Casal S, Oliveira MB, Ferreira MA. 2000. HPLC/diodearray applied to the thermal degradation of trigonelline, nicotinic acid and caffeine in coffee. Food Chem 68: 481-485. https://doi.org/10.1016/S0308-8146(99)00228-9
  35. Perrone D, Donangelo CM, Farah A. 2008. Fast simultaneous analysis of caffeine, trigonelline, nicotinic acid and sucrose in coffee by liquid chromatography-mass spectrometry. Food Chem 110: 1030-1035. https://doi.org/10.1016/j.foodchem.2008.03.012
  36. Fujioka K, Shibamoto T. 2008. Chlorogenic acid and caffeine contents in various commercial brewed coffees. Food Chem 106: 217-221. https://doi.org/10.1016/j.foodchem.2007.05.091
  37. Farah A, de Paulis T, Moreira DP, Trugo LC, Martin PR. 2006. Chlorogenic acids and lactones in regular and water- decaffeinated arabica coffees. J Agric Food Chem 54: 374-381. https://doi.org/10.1021/jf0518305
  38. Yen WJ, Wang BS, Chang LW, Duh PD. 2005. Antioxidant properties of roasted coffee residues. J Agric Food Chem 53: 2658-2663. https://doi.org/10.1021/jf0402429
  39. Sato Y, Itagaki S, Kurokawa T, Ogura J, Kobayashi M, Hirano T, Sugawara M, Iseki K. 2011. In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. Int J Pharm 403: 136-138. https://doi.org/10.1016/j.ijpharm.2010.09.035
  40. Krakauer T. 2002. The polyphenol chlorogenic acid inhibits staphylococcal exotoxin-induced inflammatory cytokines and chemokines. Immunopharmacol Immunotoxicol 24: 113-119. https://doi.org/10.1081/IPH-120003407
  41. Nkondjock A. 2009. Coffee consumption and the risk of cancer: an overview. Cancer Lett 277: 121-125. https://doi.org/10.1016/j.canlet.2008.08.022
  42. Cho AS, Jeon SM, Kim MJ, Yeo J, Seo KI, Choi MS, Lee MK. 2010. Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-inducedobese mice. Food Chem Toxicol 48: 937-943. https://doi.org/10.1016/j.fct.2010.01.003
  43. Cheng MJ, Wu MD, Su YS, Chen IS, Yuan GF. 2012. Anti-inflammatory compounds from Monascus pilosus-fermented rice. Phytochem Lett 5: 63-67. https://doi.org/10.1016/j.phytol.2011.09.008
  44. Cheng MJ, Wu MD, Yuan GF, Su YS, Yanai H. 2012. Secondary metabolites produced by the fungus Monascus pilosus and their anti-inflammatory activity. Phytochem Lett 5: 567-571. https://doi.org/10.1016/j.phytol.2012.05.015
  45. Lee YL, Yang JH, Mau JL. 2008. Antioxidant properties of water extracts from Monascus fermented soybeans. Food Chem 106: 1128-1137. https://doi.org/10.1016/j.foodchem.2007.07.047
  46. Tseng YH, Yang JH, Chang HL, Lee YL, Mau JL. 2006. Antioxidant properties of methanolic extracts from monascal adlay. Food Chem 97: 375-381. https://doi.org/10.1016/j.foodchem.2005.04.022
  47. Akihisa T, Tokuda H, Yasukawa K, Ukiya M, Kiyota A, Sakamoto N, Suzuki T, Tanabe N, Nishino H. 2005. Azaphilones, furanoisophthalides, and amino acids from the extracts of Monascus pilosus-fermented rice (red-mold rice) and their chemopreventive effects. J Agric Food Chem 53: 562-565. https://doi.org/10.1021/jf040199p

Cited by

  1. Anti-obesity and Anti-hyperlipidemic Activities of Fermented Coffee with Monascus ruber Mycelium by Solid-State Culture of Green Coffee Beans vol.43, pp.3, 2014, https://doi.org/10.3746/jkfn.2014.43.3.341
  2. Anti-adipogenic Effect of Fermented Coffee with Monascus ruber Mycelium by Solid-State Culture of Green Coffee Beans vol.43, pp.4, 2014, https://doi.org/10.3746/jkfn.2014.43.4.624
  3. The Pharmacological Activity of Coffee Fermented Using Monascus purpureus Mycelium Solid-state Culture Depends on the Cultivation Area and Green Coffees Variety vol.46, pp.1, 2014, https://doi.org/10.9721/KJFST.2014.46.1.79
  4. Quality Characteristics and Antioxidant Activity of Espresso Coffee Prepared with Green Bean Fermented by Lactic Acid Bacteria vol.45, pp.12, 2016, https://doi.org/10.3746/jkfn.2016.45.12.1799
  5. Effect of Yeast Fermentation of Green Coffee Beans on Antioxidant Activity and Consumer Acceptability vol.2018, pp.1745-4557, 2018, https://doi.org/10.1155/2018/5967130
  6. 약용식물과 커피 혼합물로부터 기능성 건강음료의 항균 및 항산화 효과 vol.26, pp.11, 2013, https://doi.org/10.5352/jls.2016.26.11.1225
  7. Functional Cordyceps Coffee Containing Cordycepin and β-Glucan vol.25, pp.2, 2013, https://doi.org/10.3746/pnf.2020.25.2.184