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REDUCING SUBSPACES FOR TOEPLITZ OPERATORS ON

THE POLYDISK

Yanyue Shi and Yufeng Lu

Abstract. In this note, we completely characterize the reducing sub-
spaces of T

z
N
1 z

M
2

on A2
α
(D2) where α > −1 and N,M are positive in-

tegers with N 6= M , and show that the minimal reducing subspaces of
T
z
N
1 z

M
2

on the unweighted Bergman space and on the weighted Bergman

space are different.

1. Introduction

Let D denote the open unit disk in the complex plane. For −1 < α < +∞,
L2(D, dAα) is the space of functions on D which are square integrable with
respect to the measure dAα(z) = (α+1)(1−|z|2)αdA(z), where dA denotes the
normalized Lebesgue area measure on D. L2(D, dAα) is a Hilbert space with

the inner product 〈f, g〉α =
∫

D
f(z)g(z)dAα. The weighted Bergman space

A2
α is the closed subspace of L2(D, dAα) consisting of analytic functions on

D. If α = 0, A2
0 is the Bergman space. We write A2=A2

0. It is known that

{ zn

‖zn‖α
}+∞
n=0 is an orthogonal basis of A2

α(D). Let γn = ‖zn‖α =
√

n!Γ(2+α)
Γ(2+α+n)

for n = 0, 1, 2, . . .. Therefore,

‖f‖2α =

+∞
∑

n=0

γ2
n|an|

2 < ∞,

with f(z) =
∑+∞

n=0 anz
n ∈ A2

α(D).
Denote the unit polydisk by Dn. The weighted Bergman space A2

α(D
n) is

then the space of all holomorphic functions on L2(Dn, dvα), where dvα(z) =
dAα(z1) · · · dAα(zn). For multi-index β = (β1, . . . , βn), β � 0 means that
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βi ≥ 0 for any i ≥ 0. Denote by zβ = z
β1

1 z
β2

2 · · · zβn
n and

eβ =
zβ

γβ1 · · · γβn

,

then {eβ}β is an orthogonal basis in A2
α(D

n).
Let P be the Bergman orthogonal projection from L2(Dn) onto A2

α(D
n).

For a bounded measurable function f ∈ L∞(Dn), the Toeplitz operator with
symbol f is defined by Tfh = P (fh) for every h ∈ A2

α(D
n).

Recall that in a Hilbert space H, a (closed) subspace M is called a reducing
subspace of the operator T if T (M) ⊆ M and T ∗(M) ⊆ M. A nontrivial
reducing subspace M is said to be minimal if the only reducing subspaces
contained in M are M and {0}. On the Bergman space A2

α(D), the reducing
subspaces of the Toeplitz operators with finite Blaschke product simples are
well studied (see [1, 2, 8] for example). On A2

α(D
2), Y. Lu and X. Zhou [4]

characterized the reducing subspaces of Toeplitz operators TzN
1 zN

2
, TzN

1
and

TzN
2
.

In this note, we consider the reducing subspaces of the Toeplitz operators
TzN

1 zM
2

on A2
α(D

2) and TzN
i
zM
j

on A2
α(D

n), where N,M ≥ 1 are integers and

1 ≤ i < j ≤ n. Usually, the Toeplitz operators on the unweighted Bergman
space and the weighted Bergman space have similar properties (see [5, 6, 7, 9]
for example). However, we obtain that the minimal reducing subspaces of
TzN

1 zM
2

with N 6= M on A2
α(D

2)(α 6= 0) are less then that on A2(D2) (see

Theorem 2.4 and Theorem 3.2).

2. The results on the Bergman space

Let M,N be integers with M,N ≥ 1 and M 6= N . In this section, we
consider the minimal reducing subspace of TzN

1 zM
2

on A2(D2). Here γk =

‖zk‖0 =
√

1
k+1 . Let ρ1(k) =

(k+1)N
M

− 1 and ρ2(k) =
(k+1)M

N
− 1. Let Hnm =

Span{zn1 z
m
2 , z

ρ1(m)
1 z

ρ2(n)
2 } and Pnm be the orthogonal projection from A2

α(D
2)

onto Hnm.

Lemma 2.1. Let n,m, h be nonnegative integers. Then the following state-

ments hold:

(a) if ρ1(m) is an integer, then ρ1(m + hM) = ρ1(m) + hN is an integer

for every h ≥ 0;
(b) if ρ2(n) is an integer, then ρ2(n+ hN) = ρ2(n) + hM is an integer for

every h ≥ 0;
(c) if ρ1(m) and ρ2(n) are positive integers, then γρ1(m)γρ2(n) = γmγn;
(d) ρ1(ρ2(n)) = n and ρ2(ρ1(m)) = m.

Proof. Notice that if ρ1(m) and ρ2(n) are positive integers, then γρ1(m) =
√

M
N
γm and γρ2(n) =

√

N
M
γn. So (c) holds. By the direct calculation, (a), (b)

and (d) are obvious. �
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Theorem 2.2. Let n,m be integers such that 0 ≤ n ≤ N−1 or 0 ≤ m ≤ M−1,
and both of ρ1(m) and ρ2(n) are integers. Then for a, b ∈ C,

M = Span{azn+hN
1 zm+hM

2 + bz
ρ1(m+hM)
1 z

ρ2(n+hN)
2 ;h = 0, 1, 2, . . .}

is a minimal reducing subspace of TzN
1 zM

2
on the polydisk.

Proof. By Lemma 2.1(a) and (b), it is easy to check that TzN
1 zM

2
(M) ⊆ M.

On the other hand,

T ∗
zN
1 zM

2
(zk1 z

l
2) =

∑

β�0

〈T ∗
zN
1 zM

2
zk1 z

l
2, e

β〉eβ

=











γ2
kγ

2
l

γ2
k−N

γ2
l−M

zk−N
1 zl−M

2 , if k ≥ N, l ≥ M,

0, if others.

For each h ≥ 1,

T ∗
zN
1 zM

2
(zn+hN

1 zm+hM
2 )

=
γ2
n+hNγ2

m+hM

γ2
n+(h−1)Nγ2

m+(h−1)M

z
n+(h−1)N
1 z

m+(h−1)M
2 ,

T ∗
zN
1 zM

2
(z

ρ1(m+hM)
1 z

ρ2(n+hN)
2 )

=
γ2
ρ1(m+hM)γ

2
ρ2(n+hN)

γ2
ρ1(m+hM)−N

γ2
ρ2(n+hN)−M

z
ρ1(m+hM)−N
1 z

ρ2(n+hN)−M
2 .

Combining this with Lemma 2.1(c), it is easy to check that

T ∗
zN
1 zM

2
(azn+hN

1 zm+hM
2 + bz

ρ1(m+hM)
1 z

ρ2(n+hN)
2 )

= µ(azn+hN−N
1 zm+hM−M

2 + bz
ρ1(m+hM−M)
1 z

ρ2(n+hN−N)
2 ) ∈ M,

where µ =
γ2
n+hNγ2

m+hM

γ2
n+(h−1)N

γ2
m+(h−1)M

=
γ2
ρ1(m+hM)γ

2
ρ2(n+hN)

γ2
ρ1(m+hM)−N

γ2
ρ2(n+hN)−M

.

Since 0 ≤ n ≤ N − 1 (or 0 ≤ m ≤ M − 1), we get ρ2(n) < M (or ρ1(m) <

N , respectively). Therefore, T ∗
zN
1 zM

2
(azn1 z

m
2 + bz

ρ1(m)
1 z

ρ2(n)
2 ) = 0 ∈ M. So

T ∗
zN
1 zM

2
(M) ∈ M, which finishes the proof. �

Lemma 2.3. Suppose M 6= 0 is a reducing subspace of TzN
1 zM

2
in A2(D2). Let

f =
∑

(k,l)�0 ak,lz
k
1z

l
2 ∈ M. For each nonnegative integers n,m with anm 6= 0,

the following statements hold:

(I) if ρ1(m), ρ2(n) are integers and aρ1(m)ρ2(n) 6= 0, then

anmzn1 z
m
2 + aρ1(m)ρ2(n)z

ρ1(m)
1 z

ρ2(n)
2 ∈ M.

(II) if at least one of ρ1(m), ρ2(n) is not an integer, or aρ1(m)ρ2(n) = 0,
then zn1 z

m
2 ∈ M.
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Proof. For every integer h ≥ 0, denote by Th = TzhN
1 zhM

2
. Notice that

T ∗
hTh(z

n
1 z

m
2 ) =

γ2
hN+nγ

2
hM+m

γ2
nγ

2
m

zn1 z
m
2 ∈ M, ∀n,m ≥ 0.(2.1)

Let PM be the orthogonal projection from A2
α(D) ontoM, then for nonnegative

integers n,m, k, l,

〈PMT ∗
hThz

n
1 z

m
2 , zk1z

l
2〉 = 〈T ∗

hThPMzn1 z
m
2 , zk1z

l
2〉 = 〈PMzn1 z

m
2 , T ∗

hThz
k
1z

l
2〉.

Thus
γ2
hN+kγ

2
hM+l

γ2
k
γ2
l

=
γ2
hN+nγ

2
hM+m

γ2
nγ

2
m

. Equivalently,

(2.2)
(k + 1)(l + 1)

(n+ 1)(m+ 1)
=

(k + hN + 1)(l + hM + 1)

(n+ hN + 1)(m+ hM + 1)
, h ≥ 0.

We claim that (k, l) = (n,m) or (k, l) = (ρ1(m), ρ2(n)). In fact, let h → +∞,
then

(k + 1)(l + 1) = (n+ 1)(m+ 1).(2.3)

It follows that (k + hN + 1)(l+ hM + 1) = (n+ hN + 1)(m+ hM + 1). Since
g(λ) = (k + λN + 1)(l + λM + 1)− (n+ λN + 1)(m+ λM + 1) is an analytic
polynormal on C, g(λ) = 0 for any λ ∈ C. The coefficient of λ must be zero.
We get

M(n− k) = N(l −m).(2.4)

This together with (2.3) implies the claim.
Therefore, PM(zn1 z

m
2 ) ∈ Hnm. Hence,

PnmPM(zn1 z
m
2 ) = PM(zn1 z

m
2 ).

Since PMf = f for every f ∈ M, we arrive to

〈PMPnmf, zn1 z
m
2 〉 = 〈f, PnmPMzn1 z

m
2 〉 = 〈f, PMzn1 z

m
2 〉 = 〈Pnmf, zn1 z

m
2 〉.

Notice that ρ2(ρ1(m)) = m, ρ1(ρ2(n)) = n and Hρ1(m)ρ2(n) = Hnm. Replacing
n, m by ρ1(m) and ρ2(n), respectively, it is easy to get that

〈PMPnmf, z
ρ1(m)
1 z

ρ2(n)
2 〉 = 〈Pnmf, z

ρ1(m)
1 z

ρ2(n)
2 〉.

Moreover, 〈PMPnmf, zk1z
l
2〉 = 〈Pnmf, zk1z

l
2〉 = 0 for any (k, l) 6= (ρ1(m), ρ2(n))

and (k, l) 6= (n,m). Hence Pnmf = PMPnm(f) ∈ M. So we get the result. �

Theorem 2.4. Suppose M 6= {0} is a reducing subspace of TzN
1 zM

2
in the

Bergman space A2(D2). Then there exist a, b ∈ C and nonnegative integers

m,n with 0 ≤ n ≤ N − 1 or 0 ≤ m ≤ M − 1, such that M contains a reducing

subspace as follows

Mn,m,a,b = Span{azhN+n
1 zhM+m

2 + bz
ρ1(m+hN)
1 z

ρ2(n+hM)
2 : h = 0, 1, 2, . . .},

where ρ1(m + hN) = (m+hN+1)M
N

− 1 and ρ2(n + hM) = (n+hM+1)N
M

− 1. In

particular, if ρ1(m) (or ρ2(n)) is not a positive integer, then b = 0. Moreover,

M is minimal if and only if M = Mn,m,a,b.
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Proof. (I) If M 6= 0, there exist nonzero function f ∈ M and k, l, such that
Pklf 6= 0. Lemma 2.3 implies that

gkl = Pklf = azk1z
l
2 + bz

ρ1(l)
1 z

ρ2(k)
2 ∈ M.

Observe that there is a positive integer h0 such that azn1 z
m
2 + bz

ρ1(m)
1 z

ρ2(n)
2 =

(T ∗
zN
1 zM

2
)h0(gkl) 6= 0, (T ∗

zN
1 zM

2
)h0+1(gkl) = 0, where n = k − h0N , m = l− h0M .

Clearly, 0 ≤ n ≤ N − 1 or 0 ≤ m ≤ M − 1. So Theorem 2.2 shows that

azn1 z
m
2 + bz

ρ1(m)
1 z

ρ2(n)
2 ∈ Mn,m,a,b ⊆ M.

(II) Suppose M is minimal. As in (I), there is a nonzero function azn1 z
m
2 +

bz
ρ1(m)
1 z

ρ2(n)
2 ∈ M. Then the following statements hold:

(a) if zn1 z
m
2 ∈ M, then M = Span{zn+hN

1 zm+hM
2 , h ≥ 0};

(b) if ρ1(m), ρ2(n) are integers, and z
ρ1(m)
1 z

ρ2(n)
2 ∈ M, then

M = Span{z
ρ1(m)+hN
1 z

ρ2(n)+hM
2 , h ≥ 0};

(c) if none of zn1 z
m
2 and z

ρ1(m)
1 z

ρ2(n)
2 is in M, then M = Mn,m,a,b with

ab 6= 0.

So we finish the proof. �

Remark 2.5. Note that

z
ρ1(m+hN)
1 z

ρ2(n+hM)
2 = z

m+ (M−N)(m+1)
N

1 z
n+ (N−M)(n+1)

M

2 zhM1 zhN2 .

If N = M , then ρ1(n) = m and ρ2(m) = n. Y. Lu and X. Zhou [4] showed that
Span{(zk1z

m
2 + zm1 zk2 )(z1z2)

hN : h = 0, 1, 2, . . .} and Span{zk1z
m
2 (z1z2)

hN : h =
0, 1, 2, . . .} are the only minimal reducing subspaces of TzN

1 zN
2
. Let ab 6= 0 with

a 6= b. Then Mn,m,a,b is a reducing subspace of TzN
1 zM

2
when N 6= M , but is

not a reducing subspace of TzN
1 zN

2
.

3. The results on the weighted Bergman space

Let −1 < α < +∞ with α 6= 0. In this section, we consider the reducing
subspace of TzN

1 zM
2

on the weighted Bergman Space A2
α(D). Here γn = ‖zn‖α =

√

n!Γ(2+α)
Γ(2+α+n) . We begin with a useful lemma.

Lemma 3.1. Let M , N , n,m, k, l be nonnegative integers with l > m, n > k

and M,N ≥ 1. If

γ2
hN+kγ

2
hM+l = γ2

hN+nγ
2
hM+m, h ≥ 0,(3.1)

then N = M , l = n and m = k.

Proof. First, note that the equality (3.1) holds if and only if for any λ ∈ C the
following equality holds:

n−k
∏

j=1

(λN + j + k)
l−m
∏

j=1

(λM + 2 + α+ l − j)(3.2)
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=

n−k
∏

j=1

(λN + 2 + α+ n− j)

l−m
∏

j=1

(λM + j +m).

By computing the coefficient of λn−k+l−m−1 in the equality (3.2), we obtain

M
∑n−k

j=1 (j+k)+N
∑l−m

j=1 (2+α+l−j) = M
∑n−k

j=1 (2+α+n−j)+N
∑l−m

j=1 (j+

m). It follows that M(n− k) = N(l −m).
Second, we prove that if α is not an integer, then the following statements

hold:

(3.3) (m+ 1)N = (k + 1)M and (l + 1 + α)N = (n+ 1 + α)M.

(a) Let λ1 = −k+1
N

. Then λ1N + k+1 = 0 and λ1N +2+α+ n− j 6= 0 for
any 1 ≤ j ≤ n− k, because λ1N + 2 + α+ n− j is not an integer. Therefore,

the equality (3.2) implies that
∏l−m

j=1 (λ1M + j +m) = 0. That is, there exists

1 ≤ h1 ≤ l − m such that λ1M + m + h1 = 0. So, h1 = k+1
N

M − m ≥ 1. It
follows that (m+ 1)N ≤ (k + 1)M .

(b) Let λ2 = −m+1
M

. Then λ2M + m + 1 = 0. Similarly, we can get an
integer h2 such that 1 ≤ h2 ≤ l−m and λ2N + k+ h2 = 0, which implies that
h2 = m+1

M
N − k ≥ 1. Thus (m+ 1)N ≥ (k + 1)M .

Comparing (a) with (b), we arrive at (m+ 1)N = (k + 1)M .
(c) Let µ1 = −n+1+α

N
. Then µ1N + n + 1 + α = 0, µ1N + k + j 6= 0

for any 1 ≤ j ≤ n − k. Therefore,
∏l−m

j=1 (µ1M + 2 + α + l − j) = 0. That
is, there exists 1 ≤ h3 ≤ l − m such that µ1M + 2 + α + l − h3 = 0. So,
h3 = −n+1+α

N
M + (2 + α+ l) ≥ 1, i.e., (l + 1 + α)N ≥ (n+ 1 + α)M .

(d) Let µ2 = − l+1+α
M

. Then µ2M + l + 1 + α = 0. As in (c), there
exists 1 ≤ h4 ≤ n − k such that µ2N + α + 2 + n − h4 = 0. So, 1 ≤ h4 =
− l+1+α

M
N + (2 + α+ n) ≤ n− k and (l + 1 + α)N ≤ (n+ 1 + α)M .

Comparing (c) with (d), we arrive at (l + 1 + α)N = (n+ 1 + α)M .
Third, we prove that if α is an positive integer, then (3.3) holds. In fact, if

1 + α ≥ 2 is an integer, then (3.2) can be simplified into

k1
∏

j=1

(λN + j + k)

m1
∏

j=1

(λM + 2 + α+ l − j)

=

k1
∏

j=1

(λN + 2 + α+ n− j)

m1
∏

j=1

(λM + j +m), ∀λ ∈ C,

where 2 ≤ k1 ≤ n − k, 2 ≤ m1 ≤ l − m, 2 + α + n − k1 > k1 + k and
2+α+ l−m1 > m1+m. By the same technique as in second part of the proof,
we can get the equalities in (3.3).

Finally, combining the equalities (3.3) with M(n− k) = N(l−m), it is easy
to get αN = αM . Since α 6= 0, we have N = M , l = n, k = m. �

Theorem 3.2. Let α 6= 0, M,N ≥ 1 with M 6= N . Suppose M 6= {0} is

a reducing subspace of TzN
1 zM

2
in the weighted Bergman space A2

α(D
2). Then



REDUCING SUBSPACES FOR TOEPLITZ OPERATORS ON THE POLYDISK 693

there exist nonnegative integers n,m with 0 ≤ n ≤ N − 1 or 0 ≤ m ≤ M − 1
such that

Mnm = Span{zhN+n
1 zhM+m

2 : h = 0, 1, 2, . . .} ⊆ M.

In particular, M is minimal if and only if there exist n,m as in assumption

such that M = Mnm.

Proof. Suppose M 6= {0} is a reducing subspace. As in the proof of Lemma
2.3, there exist integers n,m such that PM(zn1 z

m
2 ) 6= 0 and

γ2
hN+kγ

2
hM+l

γ2
kγ

2
l

=
γ2
hN+nγ

2
hM+m

γ2
nγ

2
m

, ∀h ≥ 0,

whenever 〈PM(zn1 z
m
2 ), zk1z

l
2〉 6= 0. Considering that {γj}

+∞
j=0 is strictly decreas-

ing and
γ2
hN+kγ

2
hM+l

γ2
hN+n

γ2
hM+m

→ 1 as h → +∞ [3], we obtain that γ2
kγ

2
l = γ2

nγ
2
m and

γ2
hN+kγ

2
hM+l = γ2

hN+nγ
2
hM+m, h ≥ 0. This means that one of the following

statements holds:

(1) l = m, n = k;
(2) l > m and n > k;
(3) l < m and n < k.

Since N 6= M , Lemma 3.1 implies that (2) does not hold. By the same
technique, (3) does not hold. So, (1) holds, that is, there exists cnm ∈ C such
that PM(zn1 z

m
2 ) = cnmzn1 z

m
2 . For f =

∑

(k,l)�0 aklz
k
1z

l
2 ∈ M, we claim that if

anm 6= 0, then cnm 6= 0. In fact,

Qnmf = QnmPM(f) = Qnm(
∑

(k,l)�0

PM(aklz
k
1z

l
2))

= cnmanmzn1 z
m
2 = cnmQnmf,

whereQnm is the orthogonal projection fromA2
α(D

2) onto Span{zn1 z
m
2 }. There-

fore, cnm = 1 6= 0.
Hence zn1 z

m
2 ∈ M. Choose an integer h0 such that 0 ≤ n − h0N ≤ N − 1,

m − h0M ≥ 0 or 0 ≤ m − h0M ≤ M − 1, n − h0N ≥ 0. As in the proof of

Theorem 2.4, Span{z
n+(h−h0)N
1 z

m+(h−h0)M
2 : h = 0, 1, 2, . . .} ⊆ M is a minimal

reducing subspace of TzN
1 zM

2
. The proof is complete. �

Remark 3.3. By the proof of above theorem, we know that on the weighted
Bergman space, either Span{zn1 z

m
2 } ⊆ M or Span{zn1 z

m
2 } ⊆ M⊥ holds.

Theorem 3.4. Let N,M ≥ 1 and N 6= M . Every nonzero reducing subspace

M of TzN
1 zM

2
in A2

α(D
2) for every α > −1 is a direct (orthogonal) sum of some

minimal reducing subspaces.

Proof. We prove the theorem in two cases.
Case one: α 6= 0. Let us denote

Mnm = Span{zhN+n
1 zhM+m

2 : h = 0, 1, 2, . . .},
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where 0 ≤ n ≤ N − 1 or 0 ≤ m ≤ M − 1. By Lemma 3.1, we have Mnm ⊆ M
if and only if there exist some f ∈ M with 〈f, zn1 z

m
2 〉 6= 0. Let E1 = {(n,m) �

0; n ≤ N − 1 or m ≤ M − 1, 〈f, zn1 z
m
2 〉 6= 0 for some f ∈ M}. Then M =

⊕

(n,m)∈E1
Mnm.

Case two: α = 0. For n,m ≥ 0, there exist a, b ∈ C such that M contains
the minimal reducing subspace of TzN

1 zM
2

defined by

Mn,m,a,b = Span{azhN+n
1 zhM+m

2 + bz
ρ1(m+hN)
1 z

ρ2(n+hM)
2 : h = 0, 1, 2, . . .}.

In fact,

(1) If zn1 z
m
2 ∈ M, then Mn,m,1,0 = Mnm.

(2) If z
ρ1(m)
1 z

ρ2(n)
2 ∈ M, then Mn,m,0,1 = Mρ1(m)ρ2(n).

(3) If neither zn1 z
m
2 nor z

ρ1(m)
1 z

ρ2(n)
2 are in M, and there exists f ∈ M

such that Pnmf 6= 0, then Theorem 2.4 implies that Mn,m,a,b ⊆ M
is a minimal reducing subspace of TzN

1 zM
2
, where Pnmf = azn1 z

m
2 +

bz
ρ1(m)
1 z

ρ2(n)
2 . It follows that Pnmg = λ(azn1 z

m
2 + bz

ρ1(m)
1 z

ρ2(n)
2 ) for

every g ∈ M with Pnmg 6= 0.
(4) If Pnmf = 0 for any f ∈ M, then Mn,m,a,b ⊆ M if and only if

a = 0, b = 0, i.e., Mn,m,0,0 = {0}.

Let M′ = M⊖ Mn,m,a,b. Then M′ is a reducing subspace. Continuing this
process, since A2(D2) =

⊕

(n,m)�0 z
n
1 z

m
2 , it is not different to prove that M is

the direct (orthogonal) sum of some minimal reducing subspaces as Mn,m,a,b.
�

In [8], Kehe Zhu shows that a reducing subspace of TzN on A2(D) is the
direct (orthogonal) sum of at most N minimal reducing subspaces. However,
the reducing subspace of TzN

1 zM
2

on A2(D2) may be the direct (orthogonal)

sum of infinity numbers of minimal reducing subspaces. For example, M =
Span{z1+2h

1 f(z2); f ∈ A2
α(D), h = 0, 1, 2, . . .} is a reducing subspace of Tz2

1z
3
2

and M =
⊕+∞

n=0 Mn, where Mn = Span{z1+2h
1 zn+3h

2 ; h = 0, 1, 2, . . .}.

4. The results on the polydisk A
2

α
(Dn)

In this section, we consider the reducing subspace of TzN
i
zM
j

in the weighted

Bergman space A2
α(D

n) with N 6= M .

Theorem 4.1. Suppose M 6= {0} is a reducing subspace of TzN
i
zM
j

(N,M ≥

1, N 6= M , i 6= j) in the weighted Bergman space A2
α(D

n). Then the following

statements hold:

(a) if α = 0, then there exist functions g1, g2 ∈ A2
α(D

n−2) and integers

l,m with 0 ≤ l ≤ N − 1 or 0 ≤ m ≤ M − 1, such that M contains the

reducing subspace

M′ = Span{(g1(z
′)zhN+l

1 zhM+m
2 + g2(z

′)z
ρ1(l+hN)
1 z

ρ2(m+hM)
2 );h ≥ 0};
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(b) if α 6= 0, then there exist a function g ∈ A2
α(D

n−2) and integers l,m

with 0 ≤ l ≤ N − 1 or 0 ≤ m ≤ M − 1 such that M contains the

reducing subspace

Mlmg = Span{zhN+l
i zhM+m

j g(z′) : h = 0, 1, 2, . . .},

where z′ = (z1, . . . , zi−1, zi+1, . . . , zj−1, zj+1, . . . , zn).

Moreover, M′ is the only minimal reducing subspace of TzN
i zM

j
on A2(Dn) and

Mlmg is the only minimal reducing subspace of TzN
i
zM
j

on A2
α(D

n) with α 6= 0.

Proof. Without loss of generality, let i = 1 and j = 2. Denote by PM the
orthogonal projection from A2

α(D
n) onto M. Let zK = zk1

1 zk2
2 · · · zkn

n with
PM(zK) 6= 0. Let Th = TzhN

1 zhM
2

. Then 〈T ∗
hThPMzK , zL〉 = 〈PMT ∗

hThz
K , zL〉

for any zL = zl11 zl22 · · · zlnn . Observe that

〈PMzK , T ∗
hThz

L〉 =
γ2
hN+l1

γ2
hM+l2

γ2
l1
γ2
l2

〈PMzK , zL〉,

and

〈T ∗
hThz

K , PMzL〉 =
γ2
hN+k1

γ2
hM+k2

γ2
k1
γ2
k2

〈zK , PMzL〉.

Therefore,

γ2
hN+k1

γ2
hM+k2

γ2
k1
γ2
k2

=
γ2
hN+l1

γ2
hM+l2

γ2
l1
γ2
l2

, ∀h ≥ 0,

whenever 〈PMzK , zL〉 6= 0.
If α = 0, then as in Lemma 2.3 we have (l1, l2) = (k1, k2) or (l1, l2) =

(ρ1(k2), ρ2(k1)) where ρ1(k2), ρ2(k1) are integers. Thus PMz
ρ1(k2)
1 z

ρ2(k1)
2 z′K

′

and PMzK are in zk1
1 zk2

2 A2(Dn−2) + z
ρ1(k2)
1 z

ρ2(k1)
2 A2(Dn−2), where z′ = (z3,

. . . , zn) and K ′ = (k3, . . . , kn). Let Pk1k2 be the orthogonal projection from
A2(Dn) onto

Span{zk1
1 zk2

2 A2(Dn−2) + z
ρ1(k2)
1 z

ρ2(k1)
2 A2(Dn−2);h = 0, 1, 2, . . .}.

Then Pk1k2PMzK = PMPk1k2z
K . For each f ∈ M with f 6= 0, there are

integers l,m ≥ 0 such that Plmf 6= 0. By the similar technique, we can proof
that 〈PMPmlf, z

K〉 = 〈Pmlf, z
K〉 for any K � 0, i.e., PMPmlf = Pmlf. So,

there exist f1(z
′) and g2(z

′) ∈ A2(Dn−2) such that Pmlf = g1(z
′)zm1 zl2 +

g2(z
′)z

ρ1(l)
1 z

ρ2(m)
2 ∈ M, which implies that (a) holds.

If α 6= 0, then we arrive at PMzK ∈ zk1
1 zk2

2 A2
α(D

n−2). Denote by P ′
k1k2

the

orthogonal projection from A2
α(D

n) onto

Span{zk1
1 zk2

2 A2(Dn−2);h = 0, 1, 2, . . .}.

Then P ′
k1k2

(f) = P ′
k1k2

PM(f) = PMP ′
k1k2

(f) ∈ M for each f ∈ M. Hence (b)
holds. The rest of the proof is obvious. �
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