A CLASS OF ARITHMETIC FUNCTIONS ON $\mathrm{PSL}_{2}(\mathbb{Z})$

Paul Spiegelhalter and Alexandru Zaharescu

Abstract. In [3] and [2], Atanassov introduced the two arithmetic functions

$$
I(n)=\prod_{p^{\alpha} \| n} p^{1 / \alpha} \text { and } R(n)=\prod_{p^{\alpha} \| n} p^{\alpha-1}
$$

called the irrational factor and the restrictive factor, respectively. Alkan, Ledoan, Panaitopol, and the authors explore properties of these arithmetic functions in [1], [7], [8] and [9]. In the present paper, we generalize these functions to a larger class of elements of $\mathrm{PSL}_{2}(\mathbb{Z})$, and explore some of the properties of these maps.

1. Introduction

In [3] and [2], Atanassov introduced the two arithmetic functions

$$
I(n)=\prod_{p^{\alpha} \| n} p^{1 / \alpha} \text { and } R(n)=\prod_{p^{\alpha} \| n} p^{\alpha-1}
$$

called the irrational factor and the strong restrictive factor, respectively. These functions are multiplicative, and satisfy the inequality

$$
I(n) R(n)^{2} \geq n
$$

with equality if and only if n is squarefree. In [8], Panaitopol showed that

$$
\sum_{n=1}^{\infty} \frac{1}{I(n) R(n) \phi(n)}<e^{2}
$$

and proved that the function

$$
G(n)=\prod_{\nu=1}^{n} I(\nu)^{1 / n}
$$

satisfies the inequalities

$$
e^{-7} n<G(n)<n
$$

Received December 4, 2011.
2010 Mathematics Subject Classification. Primary 11N37; Secondary 11B57.
Key words and phrases. $\mathrm{PSL}_{2}(\mathbb{Z})$, Farey fractions, Dirichlet series.
The second author is supported in part by NSF grant DMS-0901621.

In [1], Alkan, Ledoan and one of the authors describe a precise asymptotic for the function $G(n)$, and establish further results showing that the function $I(n)$ is very regular on average.

In [7], asymptotic formulas are established for certain weighted real moments of the restrictive factor $R(n)$. In [9], the authors establish asymptotic formulas for weighted combinations $I(n)^{\alpha} R(n)^{\beta}$.

In the present paper we consider for a matrix

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

in $\mathrm{PSL}_{2}(\mathbb{Z})$ the fractional linear transformation $A z$ given by

$$
A z=\frac{a z+b}{c z+d}
$$

For each positive integer n, define

$$
f_{A}(n)=\prod_{p^{\alpha} \| n} p^{\frac{a \alpha+b}{c \alpha+\alpha}}
$$

As an example, the function $I(n)$ is equal to $f_{A_{0}}(n)$ for

$$
A_{0}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

We shall consider weighted averages of the functions $f_{A}(n)$. Let

$$
M_{A}(x)=\frac{1}{x} \sum_{n \leq x}\left(1-\frac{n}{x}\right) f_{A}(n)
$$

Consider the subset $\mathcal{A} \subset \mathrm{PSL}_{2}(\mathbb{Z})$ given by

$$
\mathcal{A}=\left\{A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \operatorname{PSL}_{2}(\mathbb{Z}): \operatorname{det} A=-1, a, b, d \geq 0, c \geq 1\right\}
$$

Define for each positive rational number r

$$
E_{r}=\left\{A \in \mathcal{A}: M_{A}(x) \asymp x^{r} \text { as } x \rightarrow \infty\right\}
$$

Note that if $r_{1} \neq r_{2}$, then $E_{r_{1}} \cap E_{r_{2}}=\varnothing$. We will prove that each E_{r} with $r>0$ consists of exactly one element.

For each matrix A in \mathcal{A} we define the associated series $\left(A_{n}\right)_{n \in \mathbb{N}}$ by

$$
A_{n}=A n=\frac{a n+b}{c n+d}
$$

As we shall see, the associated series plays an important role in our computations. Clearly, if $A \in \mathcal{A}$, then A_{n} is monotone decreasing and has the finite limit $A_{\infty}:=a / c$.

We have the following result.

Theorem 1.1. Given $A \in \mathcal{A}$, if $A_{1}>0$, then there are positive real-valued constants K_{A} and c such that

$$
M_{A}(x)=K_{A} x^{A_{1}}+O_{A}\left(x^{A_{1}-1 / 2} \exp \left\{-c(\log x)^{3 / 5}(\log \log x)^{-1 / 5}\right\}\right) .
$$

We remark that under the Riemann hypothesis, for a restricted class of matrices one has an asymptotic formula for the error term in Theorem 1.1 of the form

$$
\begin{equation*}
M_{A}(x)-K_{A} x^{A_{1}} \sim \widetilde{K}_{A} x^{\frac{1}{2}\left(A_{2}-1\right)} \tag{1}
\end{equation*}
$$

for a real-valued constant \widetilde{K}_{A}. This naturally leads one to consider the maps $\psi_{j}: \mathcal{A} \rightarrow \mathbb{Q}_{+}$for $j=1,2$ given by

$$
\begin{equation*}
\psi_{j}(A)=A_{j} \tag{2}
\end{equation*}
$$

Since, as mentioned above, each E_{r} consists of exactly one element, it follows that there is a well-defined map $s: \mathbb{Q}_{+} \rightarrow \mathbb{Q}_{+}$given by

$$
\begin{equation*}
s(r)=\psi_{2} \circ \psi_{1}^{-1}(r) \tag{3}
\end{equation*}
$$

The map $s(r)$ tells us how accurately the main term $K_{A} x^{A_{1}}$ approximates $M_{A}(x)$ in (1), in the sense that it gives the exact order of magnitude of the error $M_{A}(x)-K_{A} x^{A_{1}}$.

Although it can be shown that this map is nowhere continuous, one can obtain asymptotic formulas for the average value of $s(r)$, with r in various ranges. For example, define the height function for each rational $r=p / q$ with $q \geq 1$ and $(p, q)=1$ by

$$
h(r):=\max \{|p|,|q|\} .
$$

We have the following result.
Theorem 1.2. For any $\delta>0$,

$$
\sum_{\substack{r \in \mathbb{Q}+\cap[0,1] \\ h(r) \leq X}} s(r)=\frac{3}{2 \pi^{2}} X^{2}+O_{\delta}\left(X^{11 / 6+\delta}\right)
$$

2. Asymptotics of the average

Consider the Dirichlet series

$$
F_{A}(s)=\sum_{n=1}^{\infty} \frac{f_{A}(n)}{n^{s}}
$$

We will take advantage of the meromorphic continuation of $F_{A}(s)$ in the case where $\operatorname{det} A=-1$.

Proof of Theorem 1.1. We prove the result with

$$
K_{A}=\frac{1}{\left(1+A_{1}\right)\left(2+A_{1}\right) \zeta(2)} T_{A}\left(1+A_{1}\right)
$$

If $\operatorname{det} A=-1$, then $p^{A \alpha} \leq p^{A_{1}}$ for all $\alpha \geq 1$, so $f_{A}(n) \leq n^{A_{1}}$, hence $F_{A}(s)$ converges in the half plane $\Re s=\sigma>1+A_{1}$. Moreover, $F_{A}(s)$ has an Euler product in that region. Write

$$
F_{A}(s)=\frac{\zeta\left(s-A_{1}\right)}{\zeta\left(2 s-2 A_{1}\right)} \prod_{p}\left(1+g_{p}(s)\right)
$$

where

$$
g_{p}(s)=\left(1+\frac{p^{A_{1}}}{p^{s}}\right)^{-1} \sum_{k=2}^{\infty} \frac{p^{A_{k}}}{p^{k s}}
$$

Note that if $\operatorname{det}(A)=-1$, then $A_{1}-A_{2}=\frac{1}{(c+d)(2 c+d)} \leq \frac{1}{2}$. Take $\epsilon>0$. For $\sigma \geq A_{1}+\epsilon$ we have

$$
\left(1+\frac{p^{A_{1}}}{p^{s}}\right)^{-1} \ll_{\epsilon} 1
$$

Also, for $\sigma \geq \frac{1}{2}\left(1+A_{2}+\epsilon\right)$ we have

$$
\sum_{k=2}^{\infty} \frac{p^{A_{k}}}{p^{k s}} \ll \frac{p^{A_{2}}}{p^{2 s}} \ll_{\epsilon} \frac{1}{p^{1+\epsilon}}
$$

Thus for $\sigma \geq \max \left\{A_{1}+\epsilon, \frac{1}{2}\left(1+A_{2}+\epsilon\right)\right\}$ the sum $\sum_{p}\left|g_{p}(s)\right|$ converges, hence

$$
T_{A}(s)=\prod_{p}\left(1+g_{p}(s)\right)
$$

is analytic for $\sigma>\sigma_{0}=\max \left\{A_{1}, \frac{1}{2}\left(1+A_{2}\right)\right\}$, so $F_{A}(s)$ is meromorphic there, with a poles at $s=1+A_{1}$.

To continue, we utilize a variant of Perron's formula and write

$$
\sum_{n \leq x}\left(1-\frac{n}{x}\right) f_{A}(n)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \frac{\zeta\left(s-A_{1}\right)}{\zeta\left(2 s-2 A_{1}\right)} T_{A}(s) \frac{x^{s}}{s(s+1)} d s
$$

where $1+A_{1}<c \leq 5 / 4+A_{1}$.
We apply the zero-free region for $\zeta(s)$ due to Korobov [6] and Vinogradov [12] (see Chapters 2 and 5 of the reference by Walfisz [13] for an alternative treatment)

$$
\sigma \geq 1-c_{0}(\log t)^{-2 / 3}(\log \log t)^{-1 / 3}
$$

for $t \geq t_{0}$, in which

$$
\frac{1}{|\zeta(s)|} \ll(\log t)^{2 / 3}(\log \log t)^{1 / 3}
$$

Fix $0<U<T \leq x$, let $\nu=1 / 2+A_{1}$ and

$$
\eta=\nu-c_{0}(\log U)^{-2 / 3}(\log \log U)^{-1 / 3}
$$

Deform the path of integration into the union of the line segments

$$
\begin{cases}\gamma_{1}, \gamma_{9}: s=c+i t & \text { if }|t| \geq T \\ \gamma_{2}, \gamma_{8}: s=\sigma \pm i T & \text { if } \nu \leq \sigma \leq c \\ \gamma_{3}, \gamma_{7}: s=\nu+i t & \text { if } U \leq|t| \leq T \\ \gamma_{4}, \gamma_{6}: s=\sigma \pm i U & \text { if } \eta \leq \sigma \leq \nu \\ \gamma_{5}: s=\eta+i t & \text { if }|t| \leq U\end{cases}
$$

The integrand is analytic on and within this modified contour, hence by Cauchy's theorem

$$
x M_{A}(x)=\frac{1}{\left(1+A_{1}\right)\left(2+A_{1}\right) \zeta(2)} T_{A}\left(1+A_{1}\right) x^{1+A_{1}}+\sum_{k=1}^{9} J_{k}
$$

with the main terms coming from the residue at the simple pole at $s=1+A_{1}$.
In order to estimate the integral along our modified contour we will make use of the bounds

$$
|\zeta(\sigma+i t)|= \begin{cases}O\left(t^{(1-\sigma) / 2},\right. & \text { if } 0 \leq \sigma \leq 1 \text { and }|t| \geq 1 \\ O(\log t), & \text { if } 1 \leq \sigma \leq 2 \\ O(1), & \text { if } \sigma \geq 2\end{cases}
$$

(see [11], §3.11 and §5.1).
On the line segments on which $s=c+i t,|t| \geq T$, we have that $\zeta\left(s-A_{1}\right) \ll$ $\log t$ and $1 / \zeta\left(2 s-2 A_{1}\right) \ll \log t$, so

$$
\begin{aligned}
\left|J_{1}\right|,\left|J_{9}\right| & \ll \int_{T}^{\infty}(\log t)^{2} \frac{x^{c}}{|(c+i t)(c+1+i t)|} d t \\
& \ll \frac{x^{c}(\log T)^{2}}{T} .
\end{aligned}
$$

On the line segments on which $s=\sigma+i T, \nu \leq \sigma \leq c$, we have that $1 / \zeta\left(2 s-2 A_{1}\right) \ll \log T, \zeta\left(s-A_{1}\right) \ll T^{\left(1-\sigma+A_{1}\right) / 2}$ for $\nu \leq \sigma \leq 1+A_{1}$, and $\zeta\left(s-A_{1}\right) \ll \log T$ for $1+A_{1} \leq \sigma \leq c$. So

$$
\begin{aligned}
\left|J_{2}\right|,\left|J_{8}\right| & \ll \int_{\nu}^{1+A_{1}} T^{\frac{1}{2}\left(1-\sigma+A_{1}\right)} \log T \frac{x^{\sigma}}{T^{2}} d \sigma+\int_{1+A_{1}}^{c}(\log T)^{2} \frac{x^{\sigma}}{T^{2}} d \sigma \\
& \ll T^{\frac{1}{2}\left(1+A_{1}\right)} \log T \max \left\{\left(\frac{x}{\sqrt{T}}\right)^{\nu},\left(\frac{x}{\sqrt{T}}\right)^{1+A_{1}}\right\}+\frac{(\log T)^{2}}{T^{2}} x^{c} .
\end{aligned}
$$

On the line segments on which $s=\nu+i t, U \leq|t| \leq T$, we have that $\zeta\left(s-A_{1}\right) \ll t^{\left(1-\nu+A_{1}\right) / 2}$ and $1 / \zeta\left(2 s-2 A_{1}\right) \ll \log t$, so

$$
\begin{aligned}
\left|J_{3}\right|,\left|J_{7}\right| & \ll \int_{U}^{T}(\log t) t^{\frac{1}{2}\left(1-\nu+A_{1}\right)} \frac{x^{\nu}}{|(\nu+i t)(\nu+1+i t)|} d t \\
& \ll \frac{\log T}{U^{3 / 4}} x^{\nu} .
\end{aligned}
$$

On the line segments on which $s=\sigma+i U, \eta \leq \sigma \leq \nu$, we have that $\zeta\left(s-A_{1}\right) \ll$ $U^{\left(1-\sigma+A_{1}\right) / 2}$ and $1 / \zeta\left(2 s-2 A_{1}\right) \ll \log U$, so

$$
\begin{aligned}
\left|J_{4}\right|,\left|J_{6}\right| & \ll \int_{\eta}^{\nu}(\log U) U^{\frac{1}{2}\left(1-\sigma+A_{1}\right)} \frac{x^{\sigma}}{U^{2}} d \sigma \\
& \ll U^{\frac{1}{2}\left(1+A_{1}\right)-2} \log U \max \left\{\left(\frac{x}{\sqrt{U}}\right)^{\nu},\left(\frac{x}{\sqrt{U}}\right)^{\eta}\right\} .
\end{aligned}
$$

On the line segment on which $s=\eta+i t,|t| \leq U$, we have that $\zeta\left(s-A_{1}\right) \ll$ $(|t|+1)^{\left(1-\eta+A_{1}\right) / 2}$ and $1 / \zeta\left(2 s-2 A_{1}\right) \ll \log (|t|+1)$, so

$$
\begin{aligned}
\left|J_{5}\right| & \ll \int_{-U}^{U}(|t|+1)^{1-\eta+A_{1}} \log (|t|+1) \frac{x^{\eta}}{|\eta+i t||\eta+1+i t|} d t \\
& \ll x^{\eta} \int_{-U}^{U}(|t|+1)^{\frac{1}{2}\left(1-\eta+A_{1}\right)-2} \log (|t|+1) d t .
\end{aligned}
$$

Since $\frac{1}{2}\left(1-\eta+A_{1}\right)-2 \leq-\frac{3}{2}$ for U sufficiently large, the above integral converges, hence $\left|J_{5}\right| \ll x^{\eta}$.

We collect all estimates, and take $T=x^{2}$ and

$$
U=\exp \left\{c_{2}(\log x)^{3 / 5}(\log \log x)^{-1 / 5}\right\}
$$

to obtain the desired result.
One could instead factor

$$
\left(1+\frac{p^{A_{1}}}{p^{s}}+\frac{p^{A_{2}}}{p^{2 s}}+\frac{p^{A_{3}}}{p^{3 s}}+\cdots\right)=\left(1+\frac{p^{A_{1}}}{p^{s}}\right)\left(1+\frac{p^{A_{2}}}{p^{2 s}}\right)\left(1+g_{p}(s)\right)
$$

with

$$
g_{p}(s)=\left(1+\frac{p^{A_{1}}}{p^{s}}\right)^{-1}\left(1+\frac{p^{A_{2}}}{p^{2 s}}\right)^{-1}\left(-\frac{p^{A_{1}+A_{2}}}{p^{3 s}}+\sum_{k=3}^{\infty} \frac{p^{A_{k}}}{p^{k s}}\right)
$$

so that

$$
F_{A}(s)=\frac{\zeta\left(s-A_{1}\right)}{\zeta\left(2 s-2 A_{1}\right)} \frac{\zeta\left(2 s-A_{2}\right)}{\zeta\left(4 s-2 A_{2}\right)} \prod_{p}\left(1+g_{p}(s)\right)
$$

Under the Riemann hypothesis, we get a second order term of the form $\widetilde{K}_{A} x^{A_{2}}$ in the asymptotic formula for $F_{A}(s)$ provided that $\frac{1}{4}+A_{1}<\frac{1}{2}\left(1+A_{2}\right)$. That is, provided that

$$
a+b<\frac{c+d}{2}-\frac{1}{2 c+d} .
$$

This occurs for matrices A in \mathcal{A} with restrictions on c and d. One can see that A_{1} will lie in the interval $(0,1 / 2)$.

3. Mapping through $\mathrm{PSL}_{2}(\mathbb{Z})$

We now return to the two maps ψ_{1} and ψ_{2} defined in (2).
Lemma 3.1. The map ψ_{1} is bijective.
Proof. For $\frac{p}{q} \in \mathbb{Q}_{+}$, consider the set of matrixes

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

in \mathcal{A} such that $\psi_{1}(A)=\frac{p}{q}$. We note that any such quadruple (a, b, c, d) is constrained by $c \geq 0, d \geq 0$,

$$
\begin{equation*}
a d-b c=-1 \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
c+d=\frac{q}{p}(a+b) \tag{5}
\end{equation*}
$$

(Note that (4) implies that p cannot be zero). By (5) we have

$$
c=\frac{q}{p}(a+b)-d .
$$

Inserting this into (4) gives us

$$
a d-b(a+b) \frac{q}{p}+b d=-1
$$

so

$$
(a+b)(p d-q b)=-p
$$

Write $a+b= \pm n$ for some positive integer $n \mid p$. By (5) we have $c+d=$ $\frac{q}{p}(\pm n) \in \mathbb{Z}$ so $p \mid n$, hence $p=n$.

There are two cases: If $a+b=-p$, then $c+d=-q$. This contradicts the assumptions that $q \geq 1$ and c and d are non-negative. On the other hand, if $a+b=p$, then $c+d=q$, so (4) gives us

$$
a(q-c)-b c=-1
$$

so

$$
\begin{equation*}
p c=1+a q . \tag{6}
\end{equation*}
$$

So c is uniquely determined by $c p \equiv 1(\bmod q)$ and $1 \leq c<q$. Then d is uniquely determined by $d=q-c$, and a and b by $a=\frac{1-p c}{q}$ and $b=p-a$.

In the case where $p / q \in(0,1]$, we identify p / q as an element of \mathcal{F}_{Q}, the Farey fractions of order Q, with $Q \geq q$. If we consider the "minimal" set of Farey fractions \mathcal{F}_{q} containing p / q, then elementary properties of Farey fractions (see for example Chapter 3 of [5]) give that the adjacent Farey fractions $p^{\prime} / q^{\prime}<$ $p / q<p^{\prime \prime} / q^{\prime \prime}$ satisfy $q^{\prime}=\bar{p}, p^{\prime}=\bar{q}, p^{\prime \prime}=p-\bar{q}$ and $q^{\prime \prime}=q-\bar{p}$. Here \bar{p} is the
unique integer $1 \leq \bar{p}<q$ satisfying $p \bar{p} \equiv 1(\bmod q)$ and \bar{q} is the unique integer $1 \leq \bar{q}<p$ satisfying $q \bar{q} \equiv 1(\bmod p)$. We can write

$$
\psi_{1}(p / q)=\left(\begin{array}{cc}
\bar{q} & p-\bar{q} \\
\bar{p} & q-\bar{p}
\end{array}\right)
$$

That is, the matrix $\psi_{1}(p / q)$ is comprised of the "parent" Farey fractions in \mathcal{F}_{q-1}.

Additionally, we can write the function $s(p / q)$ from (3) uniquely as

$$
\begin{equation*}
s(p / q)=\frac{\bar{p} p-1+p q}{q(\bar{p}+q)} . \tag{7}
\end{equation*}
$$

To prove Theorem 1.2, we will use the following result (see Lemma 2.3 of [4]).

Lemma 3.2. Assume that $q \geq 1$ and h are two given integers, \mathcal{I} and \mathcal{J} are intervals of length less than q, and $f: \mathcal{I} \times \mathcal{J} \rightarrow \mathbb{R}$ is a C^{1} function. Then for any integer $T \geq 1$ and any $\delta>0$

$$
\sum_{\substack{a \in \mathcal{I}, b \in \mathcal{J} \\ a b \equiv h \\ \bmod q) \\ g c d(a, b)=1}} f(a, b)=\frac{\phi(q)}{q^{2}} \iint_{\mathcal{I} \times \mathcal{J}} f(x, y) d x d y+\mathcal{E}
$$

with

$$
\begin{aligned}
\mathcal{E} \ll \delta & T^{2}\|f\|_{\infty} q^{1 / 2+\delta} g c d(h, q)^{1 / 2} \\
& +T\|\nabla f\|_{\infty} q^{3 / 2+\delta} g c d(h, q)^{1 / 2}+\frac{\|\nabla f\|_{\infty}|\mathcal{I}||\mathcal{J}|}{T}
\end{aligned}
$$

where $\|f\|_{\infty}$ and $\|\nabla f\|_{\infty}$ denote the sup-norm of f and respectively $\left|\frac{\partial f}{\partial x}\right|+\left|\frac{\partial f}{\partial y}\right|$ on $\mathcal{I} \times \mathcal{J}$.

Proof of Theorem 1.2. Let $Q=\lfloor X\rfloor$. Since $r \in \mathcal{F}_{Q}$ we have

$$
\sum_{\substack{r \in \mathbb{Q}+\cap[0,1] \\ h(r) \leq X}} s(r)=\sum_{\substack{1 \leq q \leq Q \\ 1 \leq p<q \\(p, q)=1}} s(p / q) .
$$

We use (7) and Lemma 3.2 with $T=q^{\frac{1}{6}-\frac{\delta}{3}}$ to get that the right-hand sum is equal to

$$
\begin{aligned}
\sum_{\substack{1 \leq q \leq Q}} \sum_{\substack{1 \leq p<q \\
1 \leq \bar{p}<q \\
p \bar{p}=1 \\
(p, q)=1}} \frac{\bar{m} p)}{} \frac{\bar{p} p-1+p q}{q(\bar{p}+q)} & =\sum_{1 \leq q \leq Q} \frac{\phi(q)}{q^{2}} \iint_{[1, q)^{2}} \frac{v u-1+u q}{q(v+q)} d u d v+\mathcal{E} \\
& =\sum_{1 \leq q \leq Q} \phi(q) \iint_{[1 / q, 1]^{2}} \frac{x y-\frac{1}{q^{2}}+x}{y+1} d x d y+\mathcal{E}
\end{aligned}
$$

where $\mathcal{E} \ll_{\delta} q^{5 / 6+\delta}$. The integral is equal to

$$
\begin{aligned}
& \text { so } \quad \frac{1}{2}\left(1-\frac{1}{q^{2}}\right)\left(1-\frac{1}{q}\right)-\frac{q-1}{q^{3}}\left(\log 2-\log \left(1+\frac{1}{q}\right)\right)=\frac{1}{2}+O\left(\frac{1}{q}\right) \\
& \\
& \sum_{\substack{r \in \mathbb{Q}+\cap[0,1] \\
h(r) \leq X}} s(r)=\frac{1}{2} \sum_{1 \leq q \leq Q} \phi(q)+O\left(\sum_{1 \leq q \leq Q} \frac{\phi(q)}{q}\right)+O\left(\sum_{1 \leq q \leq Q} q^{5 / 6+\delta}\right) .
\end{aligned}
$$

One can use the methods of Section 2 to estimate the sums over $\phi(q)$, or use partial summation along with standard estimates (see for example [13] or Chapter 18 of [5]). This gives the main term of our theorem; the first error term above is $O(X)$, and the second is $O_{\delta}\left(X^{11 / 6+\delta}\right)$.

References

[1] E. Alkan, A. H. Ledoan, and A. Zaharescu, Asymptotic behavior of the irrational factor, Acta Math. Hungar. 121 (2008), no. 3, 293-305.
[2] K. T. Atanassov, Restrictive factor: definition, properties and problems, Notes Number Theory Discrete Math. 8 (2002), no. 4, 117-119.
[3] , Irrational factor: definition, properties and problems, Notes Number Theory Discrete Math. 2 (1996), no. 3, 42-44.
[4] F. Boca and R. Gologan, On the distribution of the free path length of the linear flow in a honeycomb, Ann. Inst. Fourier (Grenoble) 59 (2009), no. 3, 1043-1075.
[5] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Sixth, Revised by D. R. Heath-Brown and J. H. Silverman, With a foreword by Andrew Wiles, Oxford University Press, Oxford, 2008.
[6] N. M. Korobov, Estimates of trigonometric sums and their applications, Uspehi Mat. Nauk 13 (1958), no. 4, 185-192.
[7] A. Ledoan and A. Zaharescu, Real moments of the restrictive factor, Proc. Indian Acad. Sci. Math. Sci. 119 (2009), no. 4, 559-566.
[8] L. Panaitopol, Properties of the Atanassov functions, Adv. Stud. Contemp. Math. (Kyungshang) 8 (2004), no. 1, 55-58.
[9] P. Spiegelhalter and A. Zaharescu, Strong and weak Atanassov pairs, Proc. Jangjeon Math. Soc. 14 (2011), no. 3, 355-361.
[10] E. C. Titchmarsh, The Theory of Functions, Oxford University Press, London, 1939.
[11] \qquad , The theory of the Riemann zeta-function, Edited and with a preface by D. R. Heath-Brown, The Clarendon Press Oxford University Press, New York, 1986.
[12] I. M. Vinogradov, A new estimate of the function $\zeta(1+i t)$, Izv. Akad. Nauk SSSR. Ser. Mat. 22 (1958), 161-164.
[13] A. Walfisz, Weylsche Exponentialsummen in der neueren Zahlentheorie, VEB Deutsche Verlag der Wissenschaften, Berlin, 1963.

Paul Spiegelhalter
Department of Mathematics
University of Illinois
1409 West Green Street, Urbana, IL 61801, USA
E-mail address: spiegel3@illinois.edu

Alexandru Zaharescu
Department of Mathematics
University of Illinois
1409 West Green Street, Urbana, IL 61801, USA
E-mail address: zaharesc@illinois.edu

