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A CLASS OF ARITHMETIC FUNCTIONS ON PSL2(Z)

PAUL SPIEGELHALTER AND ALEXANDRU ZAHARESCU

ABSTRACT. In [3] and [2], Atanassov introduced the two arithmetic func-

tions
I(n) = H p/* and R(n) = H p*L

p*|In p*|In
called the irrational factor and the restrictive factor, respectively. Alkan,
Ledoan, Panaitopol, and the authors explore properties of these arith-
metic functions in [1], [7], [8] and [9]. In the present paper, we generalize
these functions to a larger class of elements of PSL(Z), and explore some
of the properties of these maps.

1. Introduction
In [3] and [2], Atanassov introduced the two arithmetic functions
I(n) = H pY/% and R(n)= H pt
p*[|n p*[ln

called the irrational factor and the strong restrictive factor, respectively. These
functions are multiplicative, and satisfy the inequality

I(n)R(n)* > n,
with equality if and only if n is squarefree. In [8], Panaitopol showed that

; I R(m)é(n) ~

and proved that the function

satisfies the inequalities
e~ n < G(n) <n.
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In [1], Alkan, Ledoan and one of the authors describe a precise asymptotic
for the function G(n), and establish further results showing that the function
I(n) is very regular on average.

In [7], asymptotic formulas are established for certain weighted real moments
of the restrictive factor R(n). In [9], the authors establish asymptotic formulas
for weighted combinations 7(n)*R(n)".

In the present paper we consider for a matrix

=(0a)

in PSLy(Z) the fractional linear transformation Az given by

_az+b
ez +d
For each positive integer n, define
ac+b
fA (n) = pca+d .
p*In

As an example, the function I(n) is equal to fa,(n) for

01
w=(15)
We shall consider weighted averages of the functions f4(n). Let

My(z) = % Z (1 — g) fa(n).

Consider the subset A C PSLy(Z) given by

A= {A < (CL Z > € PSLy(Z) : det A = —1,a,b,d > 0,c > 1}.

Define for each positive rational number r
E.={Ac A: My(z) <z" as x — o0}.

Note that if r1 # ry, then E,, N E., = @. We will prove that each E, with
r > 0 consists of exactly one element.
For each matrix A in A we define the associated series (A, )nen by
an+b
en+d

A, = An =

As we shall see, the associated series plays an important role in our computa-
tions. Clearly, if A € A, then A,, is monotone decreasing and has the finite
limit A :=a/ec.

We have the following result.
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Theorem 1.1. Given A € A, if Ay > 0, then there are positive real-valued
constants K o and ¢ such that

Ma(z) = Kaz™ 4+ Oa (xArl/Q exp{fc(logx)g/s(loglogz)*1/5}) .

We remark that under the Riemann hypothesis, for a restricted class of
matrices one has an asymptotic formula for the error term in Theorem 1.1 of
the form

(1) Ma(z) — Kaz™ ~ Kpz2A2=D

for a real-valued constant K 4. This naturally leads one to consider the maps
Y A— Qg for j = 1,2 given by

(2) ¥i(A) = A;.

Since, as mentioned above, each F, consists of exactly one element, it follows
that there is a well-defined map s : Q4+ — Q4 given by

3) s(r) = a2 0y ().

The map s(r) tells us how accurately the main term Kaz' approximates
Ma(z) in (1), in the sense that it gives the exact order of magnitude of the
error Ma(x) — Kax™t.

Although it can be shown that this map is nowhere continuous, one can
obtain asymptotic formulas for the average value of s(r), with r in various
ranges. For example, define the height function for each rational r = p/q with
g >1and (p,q) =1 by

h(r) := max{]pl, |ql}.
We have the following result.

Theorem 1.2. For any § > 0,

Z s(r) = 3 X% 4 05(X11/6%9),

2m?
r€Q4n[0,1]
h(r)<X

2. Asymptotics of the average

Consider the Dirichlet series
— fa(n)
F = E .
A(S) Pt ns

We will take advantage of the meromorphic continuation of F4(s) in the case
where det A = —1.

Proof of Theorem 1.1. We prove the result with
1

=T ame T e

Ta(l+ Ay).
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If det A = —1, then pA® < pAt for all a > 1, so fa(n) < n?1, hence Fa(s)
converges in the half plane Rs = o > 14+ A;. Moreover, F4(s) has an Euler
product in that region. Write

C(s — A1)
F = 1
A(S> 4(28—2141) ];[( +gp(5))a
where
Ay -1 A
p p
gp(s): (1+ s ) Z ks *
p s p
Note that if det(A) = —1, then A; — Ay = WBCW < % Take ¢ > 0. For

o > A + e we have

A1 -1
(1 + p . ) <. 1.
p
Also, for o > %(1 + As + €) we have
Ag

[e'e] Ak
P p 1

< Le —.

; pks p25 € pl—i—e

Thus for o > max{A4; +¢,2(1+ Ay + €)} the sum > |gp(s)| converges, hence

Ta(s) = [T (1 +gn(s)

p

is analytic for o > 09 = max {41, 3(1 + A2)}, so Fa(s) is meromorphic there,
with a poles at s =1+ A;.
To continue, we utilize a variant of Perron’s formula and write

S

n 1 [t (s — Ay) x
)y (1 - E) fa(m) = 2_m/ (25 — 24 A5 &

n<w c—100 g

where 1 + A; < ¢ <5/4+ A;.

We apply the zero-free region for ((s) due to Korobov [6] and Vinogradov
[12] (see Chapters 2 and 5 of the reference by Walfisz [13] for an alternative
treatment,)

o >1—co(logt)~2/*(oglogt)~1/3
for t > tg, in which

< (logt)*?(loglog t)'/3.

1
I<(s)]
Fix0<U<T<uzlet v=1/2+ A; and

n=v—cologU)~2/3(oglog U)~/3.
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Deform the path of integration into the union of the line segments

m,Y9:s=c+it it >T
Yo,78 s =ocxiT ifv<o<ec
Y3,7v7 1 S =V +it fU<|t|<T
Y4,v6:s=ocxiU ifn<o<y
V518 =mn+it if (] <U.
The integrand is analytic on and within this modified contour, hence by
Cauchy’s theorem

9

Ta(l+ Azt 43",
k=1

1
(14 A1)(2+ 41)¢(2)
with the main terms coming from the residue at the simple pole at s = 1+ Aj;.

In order to estimate the integral along our modified contour we will make
use of the bounds

aMa(z) =

O@t=2/2, if0<o<1land|t|>1
|¢(o +it)] = ¢ O(logt), ifl1<o<2
o(1), if o > 2
(see [11], §3.11 and §5.1).

On the line segments on which s = ¢+ it, |t| > T, we have that (s — A;) <
logt and 1/{(2s — 241) < logt, so

Jil, |, logt)?
| 1|a| 9| < /T (Og) |(C+’Lt)(

2¢(log T)?
— 7

On the line segments on which s = ¢ + i1, v < o < ¢, we have that
1/¢(2s — 24;) < logT, ((s — A}) < TU=0+4)/2 for v < ¢ < 1+ A, and
C(s—A))<logT for 1+ A1 <o <e. So

:L.C

dt
c+1+it)]

<

C

AL 4o
N A e e s
v T 1+ A,

v 1+A; 2
1 logT)* .
< T3A+A) Tmax{ (i) ’(i> }+( -
& VT VT 17

On the line segments on which s = v+ it, U < |t| < T, we have that
C(s — Ay) < t(=v+40/2 and 1/¢(2s — 24,) < logt, so

(log T)? % do

v

x dt
i)+ 1+it)]

T
|Js], |J7] < /(logt)t%(l—”“l)
U

logT
At
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On the line segments on which s = o+iU, n < 0 < v, we have that ((s— A1) <
U=o+40/2 and 1/¢(2s — 24;) < logU, so

|Jal, [J6] < /(1ogU)U%(1*U+A1)% do
n

v n
< UF+A)=2100 [T max (i) (i) .
gUmax{ (=) (=) }

On the line segment on which s = n +it, [t| < U, we have that {(s — A1)
(|t] + 1)A=n+40/2 and 1/¢(2s — 24;) < log(|t| + 1

U n
X
Js| < / t+ D) A og ([t + 1 _ — dt
U
< x"/ (|t| + 1)z =1t40 =2 160(|t| 4 1) dt.
-U

Since (1 —n + A;) —2 < —3 for U sufficiently large, the above integral
converges, hence |J5| < z".

We collect all estimates, and take T' = x* and

U = exp{ca(logz)®/°(loglog )1/}
to obtain the desired result

O
One could instead factor
Ay Ag As Aq Ao
b D D D D
L) (1) (1422 4
( ps p25 p3s ps p25 p
with
A\ 1 Ag 1 A1+Az AR
p p p p
gp(s) =1+ ) (1+ ) - + E
P( ) ( ps p2s pSS = pks
so that

- C(S—Al) 28—A2
Fals) = 755 =24, C(ds —24y) 1;[ (149

Under the Riemann hypothesis, we get a second order term of the form Kax
in the asymptotic formula for Fa(s) provided that i 7 +41 <

(1 + AQ) That
is, provided that

d 1
a+b<c+ -

2 2c+d’

This occurs for matrices A in A with restrictions on ¢ and d. One can see that
Ay will lie in the interval (0,1/2).




A CLASS OF ARITHMETIC FUNCTIONS ON PSLx(Z) 607
3. Mapping through PSLy(Z)
We now return to the two maps 1 and 12 defined in (2).
Lemma 3.1. The map 1 is bijective.
Proof. For % € Q., consider the set of matrixes
a b
-(%0)

in A such that i1 (A) = %. We note that any such quadruple (a,b,c¢,d) is
constrained by ¢ > 0, d > 0,

(4) ad —bc=—1
and
(5) c+d:g(a+b)

(Note that (4) implies that p cannot be zero). By (5) we have
c=12 (a+0b)—d.
p
Inserting this into (4) gives us

ad —bla+b)L +bd = -1
p

SO
(a+b)(pd — gb) = —p.
Write a + b = £n for some positive integer n | p. By (5) we have ¢ +d =
1(+n) € Zso p | n, hence p = n.
There are two cases: If a +b = —p, then ¢ + d = —q. This contradicts the
assumptions that ¢ > 1 and ¢ and d are non-negative. On the other hand, if
a+b=p, then c+d = q, so (4) gives us

a(qg—c) —bc=—1
S0
(6) pc=1+agq.

So ¢ is uniquely determined by ¢p = 1 (mod ¢q) and 1 < ¢ < ¢q. Then d is
uniquely determined by d = ¢ — ¢, and a and b by a = 1;}": andb=p—a. O

In the case where p/q € (0, 1], we identify p/q as an element of Fq, the Farey
fractions of order @, with @ > ¢. If we consider the “minimal” set of Farey
fractions F, containing p/q, then elementary properties of Farey fractions (see
for example Chapter 3 of [5]) give that the adjacent Farey fractions p'/q’ <

p/q <p"/q" satisfy ¢ =p, p' =¢q, p" =p—qand ¢" = qg—p. Here p is the
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unique integer 1 < p < ¢ satisfying pp = 1 (mod ¢) and ¢ is the unique integer
1 < g < p satisfying ¢ = 1 (mod p). We can write

= (4270,

13

That is, the matrix 91 (p/q) is comprised of the
Fa-1.
Additionally, we can write the function s(p/q) from (3) uniquely as

parent” Farey fractions in

pp—1+pg
7) s(p/q) = —————.
( R TR
To prove Theorem 1.2, we will use the following result (see Lemma 2.3 of

[4])-

Lemma 3.2. Assume that ¢ > 1 and h are two given integers, T and J are
intervals of length less than q, and f: T x J — R is a C' function. Then for
any integer T > 1 and any § > 0

_ 9 v.y)de
> =2 /Mf( y)dady + €,

a€Z,beJ
ab=h (mod q)
ged(a,b)=1
with
€ <5 T?| fllocd"*** ged(h, )"/
IVl ZIl T
T b

where || flloo and |V flleo denote the sup-norm of f and respectively |6f| +| |
onl x J.

+ TV flloog®* 0 ged(h, q)'/? +

Proof of Theorem 1.2. Let Q = | X |. Since r € F¢g we have

doostr)= > sp/a)-

reQ4NI[0,1] 1<q<@Q
h(r)<X 1<p<q
(p,9)=1

We use (7) and Lemma 3.2 with T = ¢~ 3 to get that the right-hand sum is
equal to

on — 1 —1
> v omolim oy // +uqdudv+5
q [1,9)2

1<¢<@Q 1<p<gq (p + q) 1<q<Q v +a)

1<p<q
— e ey + €.
//1/q1]2 y—i—l

pp=1 (mod q)
(p,q)=1
1<q<Q
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where £ <5 ¢°/%t%. The integral is equal to
1 1 1 qg—1 ( 1 1 1
—|1-=)(1-=]— log2—log(1+—))=—+0(—>
2 ( qQ) ( Q) ¢ q 2 q

Y sr) = %Z d@+0 | > ¢(a) +o| 3 g

reQn0,1] 1<4<Q 1<z ¢ 1<4<Q
h(r)<X

SO

One can use the methods of Section 2 to estimate the sums over ¢(q), or
use partial summation along with standard estimates (see for example [13] or
Chapter 18 of [5]). This gives the main term of our theorem; the first error
term above is O(X), and the second is Os(X11/6+9). O
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