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A CLASS OF ARITHMETIC FUNCTIONS ON PSL2(Z)

Paul Spiegelhalter and Alexandru Zaharescu

Abstract. In [3] and [2], Atanassov introduced the two arithmetic func-
tions

I(n) =
∏

pα||n

p1/α and R(n) =
∏

pα||n

pα−1

called the irrational factor and the restrictive factor, respectively. Alkan,
Ledoan, Panaitopol, and the authors explore properties of these arith-
metic functions in [1], [7], [8] and [9]. In the present paper, we generalize
these functions to a larger class of elements of PSL2(Z), and explore some
of the properties of these maps.

1. Introduction

In [3] and [2], Atanassov introduced the two arithmetic functions

I(n) =
∏

pα||n

p1/α and R(n) =
∏

pα||n

pα−1

called the irrational factor and the strong restrictive factor, respectively. These
functions are multiplicative, and satisfy the inequality

I(n)R(n)2 ≥ n,

with equality if and only if n is squarefree. In [8], Panaitopol showed that

∞∑

n=1

1

I(n)R(n)φ(n)
< e2,

and proved that the function

G(n) =

n∏

ν=1

I(ν)1/n

satisfies the inequalities

e−7n < G(n) < n.
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In [1], Alkan, Ledoan and one of the authors describe a precise asymptotic
for the function G(n), and establish further results showing that the function
I(n) is very regular on average.

In [7], asymptotic formulas are established for certain weighted real moments
of the restrictive factor R(n). In [9], the authors establish asymptotic formulas
for weighted combinations I(n)αR(n)β .

In the present paper we consider for a matrix

A =

(
a b
c d

)

in PSL2(Z) the fractional linear transformation Az given by

Az =
az + b

cz + d
.

For each positive integer n, define

fA(n) =
∏

pα||n

p
aα+b

cα+d .

As an example, the function I(n) is equal to fA0
(n) for

A0 =

(
0 1
1 0

)
.

We shall consider weighted averages of the functions fA(n). Let

MA(x) =
1

x

∑

n≤x

(
1− n

x

)
fA(n).

Consider the subset A ⊂ PSL2(Z) given by

A =

{
A =

(
a b
c d

)
∈ PSL2(Z) : detA = −1, a, b, d ≥ 0, c ≥ 1

}
.

Define for each positive rational number r

Er = {A ∈ A :MA(x) ≍ xr as x→ ∞}.

Note that if r1 6= r2, then Er1 ∩ Er2 = Ø. We will prove that each Er with
r > 0 consists of exactly one element.

For each matrix A in A we define the associated series (An)n∈N by

An = An =
an+ b

cn+ d
.

As we shall see, the associated series plays an important role in our computa-
tions. Clearly, if A ∈ A, then An is monotone decreasing and has the finite
limit A∞ := a/c.

We have the following result.
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Theorem 1.1. Given A ∈ A, if A1 > 0, then there are positive real-valued

constants KA and c such that

MA(x) = KAx
A1 +OA

(
xA1−1/2 exp{−c(logx)3/5(log log x)−1/5}

)
.

We remark that under the Riemann hypothesis, for a restricted class of
matrices one has an asymptotic formula for the error term in Theorem 1.1 of
the form

(1) MA(x) −KAx
A1 ∼ K̃Ax

1
2
(A2−1)

for a real-valued constant K̃A. This naturally leads one to consider the maps
ψj : A → Q+ for j = 1, 2 given by

(2) ψj(A) = Aj .

Since, as mentioned above, each Er consists of exactly one element, it follows
that there is a well-defined map s : Q+ → Q+ given by

(3) s(r) = ψ2 ◦ ψ−1
1 (r).

The map s(r) tells us how accurately the main term KAx
A1 approximates

MA(x) in (1), in the sense that it gives the exact order of magnitude of the
error MA(x) −KAx

A1 .
Although it can be shown that this map is nowhere continuous, one can

obtain asymptotic formulas for the average value of s(r), with r in various
ranges. For example, define the height function for each rational r = p/q with
q ≥ 1 and (p, q) = 1 by

h(r) := max{|p|, |q|}.
We have the following result.

Theorem 1.2. For any δ > 0,
∑

r∈Q+∩[0,1]
h(r)≤X

s(r) =
3

2π2
X2 +Oδ(X

11/6+δ).

2. Asymptotics of the average

Consider the Dirichlet series

FA(s) =

∞∑

n=1

fA(n)

ns
.

We will take advantage of the meromorphic continuation of FA(s) in the case
where detA = −1.

Proof of Theorem 1.1. We prove the result with

KA =
1

(1 +A1)(2 +A1)ζ(2)
TA(1 +A1).
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If detA = −1, then pAα ≤ pA1 for all α ≥ 1, so fA(n) ≤ nA1 , hence FA(s)
converges in the half plane ℜs = σ > 1 + A1. Moreover, FA(s) has an Euler
product in that region. Write

FA(s) =
ζ(s−A1)

ζ(2s− 2A1)

∏

p

(1 + gp(s)) ,

where

gp(s) =

(
1 +

pA1

ps

)−1 ∞∑

k=2

pAk

pks
.

Note that if det(A) = −1, then A1 − A2 = 1
(c+d)(2c+d) ≤ 1

2 . Take ǫ > 0. For

σ ≥ A1 + ǫ we have
(
1 +

pA1

ps

)−1

≪ǫ 1.

Also, for σ ≥ 1
2 (1 +A2 + ǫ) we have

∞∑

k=2

pAk

pks
≪ pA2

p2s
≪ǫ

1

p1+ǫ
.

Thus for σ ≥ max{A1 + ǫ, 12 (1 +A2 + ǫ)} the sum
∑

p |gp(s)| converges, hence

TA(s) =
∏

p

(1 + gp(s))

is analytic for σ > σ0 = max
{
A1,

1
2 (1 +A2)

}
, so FA(s) is meromorphic there,

with a poles at s = 1 +A1.
To continue, we utilize a variant of Perron’s formula and write

∑

n≤x

(
1− n

x

)
fA(n) =

1

2πi

∫ c+i∞

c−i∞

ζ(s−A1)

ζ(2s− 2A1)
TA(s)

xs

s(s+ 1)
ds,

where 1 +A1 < c ≤ 5/4 +A1.
We apply the zero-free region for ζ(s) due to Korobov [6] and Vinogradov

[12] (see Chapters 2 and 5 of the reference by Walfisz [13] for an alternative
treatment)

σ ≥ 1− c0(log t)
−2/3(log log t)−1/3

for t ≥ t0, in which

1

|ζ(s)| ≪ (log t)2/3(log log t)1/3.

Fix 0 < U < T ≤ x, let ν = 1/2 +A1 and

η = ν − c0(logU)−2/3(log logU)−1/3.
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Deform the path of integration into the union of the line segments





γ1, γ9 : s = c+ it if |t| ≥ T

γ2, γ8 : s = σ ± iT if ν ≤ σ ≤ c

γ3, γ7 : s = ν + it if U ≤ |t| ≤ T

γ4, γ6 : s = σ ± iU if η ≤ σ ≤ ν

γ5 : s = η + it if |t| ≤ U.

The integrand is analytic on and within this modified contour, hence by
Cauchy’s theorem

xMA(x) =
1

(1 +A1)(2 +A1)ζ(2)
TA(1 +A1)x

1+A1 +

9∑

k=1

Jk,

with the main terms coming from the residue at the simple pole at s = 1+A1.
In order to estimate the integral along our modified contour we will make

use of the bounds

|ζ(σ + it)| =





O(t(1−σ)/2, if 0 ≤ σ ≤ 1 and |t| ≥ 1

O(log t), if 1 ≤ σ ≤ 2

O(1), if σ ≥ 2

(see [11], §3.11 and §5.1).
On the line segments on which s = c+ it, |t| ≥ T , we have that ζ(s−A1) ≪

log t and 1/ζ(2s− 2A1) ≪ log t, so

|J1|, |J9| ≪
∫ ∞

T

(log t)2
xc

|(c+ it)(c+ 1 + it)| dt

≪ xc(logT )2

T
.

On the line segments on which s = σ + iT , ν ≤ σ ≤ c, we have that
1/ζ(2s − 2A1) ≪ logT , ζ(s − A1) ≪ T (1−σ+A1)/2 for ν ≤ σ ≤ 1 + A1, and
ζ(s−A1) ≪ logT for 1 +A1 ≤ σ ≤ c. So

|J2|, |J8| ≪
∫ 1+A1

ν

T
1
2
(1−σ+A1) logT

xσ

T 2
dσ +

∫ c

1+A1

(logT )2
xσ

T 2
dσ

≪ T
1
2
(1+A1) logT max

{( x√
T

)ν

,

(
x√
T

)1+A1 }
+

(log T )2

T 2
xc.

On the line segments on which s = ν + it, U ≤ |t| ≤ T , we have that
ζ(s−A1) ≪ t(1−ν+A1)/2 and 1/ζ(2s− 2A1) ≪ log t, so

|J3|, |J7| ≪
∫ T

U

(log t)t
1
2
(1−ν+A1)

xν

|(ν + it)(ν + 1 + it)| dt

≪ logT

U3/4
xν .
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On the line segments on which s = σ+iU , η ≤ σ ≤ ν, we have that ζ(s−A1) ≪
U (1−σ+A1)/2 and 1/ζ(2s− 2A1) ≪ logU , so

|J4|, |J6| ≪
∫ ν

η

(logU)U
1
2
(1−σ+A1)

xσ

U2
dσ

≪ U
1
2
(1+A1)−2 logU max

{( x√
U

)ν

,

(
x√
U

)η }
.

On the line segment on which s = η + it, |t| ≤ U , we have that ζ(s − A1) ≪
(|t|+ 1)(1−η+A1)/2 and 1/ζ(2s− 2A1) ≪ log(|t|+ 1), so

|J5| ≪
∫ U

−U

(|t|+ 1)1−η+A1 log(|t|+ 1)
xη

|η + it||η + 1 + it| dt

≪ xη
∫ U

−U

(|t|+ 1)
1
2
(1−η+A1)−2 log(|t|+ 1) dt.

Since 1
2 (1 − η + A1) − 2 ≤ − 3

2 for U sufficiently large, the above integral
converges, hence |J5| ≪ xη.

We collect all estimates, and take T = x2 and

U = exp{c2(log x)3/5(log log x)−1/5}

to obtain the desired result. �

One could instead factor
(
1 +

pA1

ps
+
pA2

p2s
+
pA3

p3s
+ · · ·

)
=

(
1 +

pA1

ps

)(
1 +

pA2

p2s

)
(1 + gp(s))

with

gp(s) =

(
1 +

pA1

ps

)−1(
1 +

pA2

p2s

)−1
(
−p

A1+A2

p3s
+

∞∑

k=3

pAk

pks

)

so that

FA(s) =
ζ(s−A1)

ζ(2s− 2A1)

ζ(2s−A2)

ζ(4s− 2A2)

∏

p

(1 + gp(s)) .

Under the Riemann hypothesis, we get a second order term of the form K̃Ax
A2

in the asymptotic formula for FA(s) provided that 1
4 +A1 <

1
2 (1 + A2). That

is, provided that

a+ b <
c+ d

2
− 1

2c+ d
.

This occurs for matrices A in A with restrictions on c and d. One can see that
A1 will lie in the interval (0, 1/2).
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3. Mapping through PSL2(Z)

We now return to the two maps ψ1 and ψ2 defined in (2).

Lemma 3.1. The map ψ1 is bijective.

Proof. For p
q ∈ Q+, consider the set of matrixes

A =

(
a b
c d

)

in A such that ψ1(A) = p
q . We note that any such quadruple (a, b, c, d) is

constrained by c ≥ 0, d ≥ 0,

(4) ad− bc = −1

and

(5) c+ d =
q

p
(a+ b)

(Note that (4) implies that p cannot be zero). By (5) we have

c =
q

p
(a+ b)− d.

Inserting this into (4) gives us

ad− b(a+ b)
q

p
+ bd = −1

so

(a+ b)(pd− qb) = −p.
Write a + b = ±n for some positive integer n | p. By (5) we have c + d =
q
p (±n) ∈ Z so p | n, hence p = n.

There are two cases: If a + b = −p, then c + d = −q. This contradicts the
assumptions that q ≥ 1 and c and d are non-negative. On the other hand, if
a+ b = p, then c+ d = q, so (4) gives us

a(q − c)− bc = −1

so

(6) pc = 1 + aq.

So c is uniquely determined by cp ≡ 1 (mod q) and 1 ≤ c < q. Then d is

uniquely determined by d = q− c, and a and b by a = 1−pc
q and b = p− a. �

In the case where p/q ∈ (0, 1], we identify p/q as an element of FQ, the Farey
fractions of order Q, with Q ≥ q. If we consider the “minimal” set of Farey
fractions Fq containing p/q, then elementary properties of Farey fractions (see
for example Chapter 3 of [5]) give that the adjacent Farey fractions p′/q′ <
p/q < p′′/q′′ satisfy q′ = p̄, p′ = q̄, p′′ = p − q̄ and q′′ = q − p̄. Here p̄ is the
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unique integer 1 ≤ p̄ < q satisfying pp̄ ≡ 1 (mod q) and q̄ is the unique integer
1 ≤ q̄ < p satisfying qq̄ ≡ 1 (mod p). We can write

ψ1(p/q) =

(
q̄ p− q̄
p̄ q − p̄

)
.

That is, the matrix ψ1(p/q) is comprised of the “parent” Farey fractions in
Fq−1.

Additionally, we can write the function s(p/q) from (3) uniquely as

(7) s(p/q) =
p̄p− 1 + pq

q(p̄+ q)
.

To prove Theorem 1.2, we will use the following result (see Lemma 2.3 of
[4]).

Lemma 3.2. Assume that q ≥ 1 and h are two given integers, I and J are

intervals of length less than q, and f : I × J → R is a C1 function. Then for

any integer T ≥ 1 and any δ > 0

∑

a∈I,b∈J
ab≡h (mod q)

gcd(a,b)=1

f(a, b) =
φ(q)

q2

∫∫

I×J

f(x, y)dxdy + E ,

with

E ≪δ T
2‖f‖∞q1/2+δgcd(h, q)1/2

+ T ‖∇f‖∞q3/2+δgcd(h, q)1/2 +
‖∇f‖∞|I||J |

T
,

where ‖f‖∞ and ‖∇f‖∞ denote the sup-norm of f and respectively |∂f∂x |+ |∂f∂y |
on I × J .

Proof of Theorem 1.2. Let Q = ⌊X⌋. Since r ∈ FQ we have
∑

r∈Q+∩[0,1]
h(r)≤X

s(r) =
∑

1≤q≤Q
1≤p<q
(p,q)=1

s(p/q).

We use (7) and Lemma 3.2 with T = q
1
6
− δ

3 to get that the right-hand sum is
equal to

∑

1≤q≤Q

∑

1≤p<q
1≤p̄<q

pp̄≡1 (mod q)
(p,q)=1

p̄p− 1 + pq

q(p̄+ q)
=

∑

1≤q≤Q

φ(q)

q2

∫∫

[1,q)2

vu− 1 + uq

q(v + q)
dudv + E

=
∑

1≤q≤Q

φ(q)

∫∫

[1/q,1]2

xy − 1
q2 + x

y + 1
dxdy + E .
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where E ≪δ q
5/6+δ. The integral is equal to

1

2

(
1− 1

q2

)(
1− 1

q

)
− q − 1

q3

(
log 2− log

(
1 +

1

q

))
=

1

2
+O

(
1

q

)

so

∑

r∈Q+∩[0,1]
h(r)≤X

s(r) =
1

2

∑

1≤q≤Q

φ(q) +O



∑

1≤q≤Q

φ(q)

q


 +O



∑

1≤q≤Q

q5/6+δ


 .

One can use the methods of Section 2 to estimate the sums over φ(q), or
use partial summation along with standard estimates (see for example [13] or
Chapter 18 of [5]). This gives the main term of our theorem; the first error
term above is O(X), and the second is Oδ(X

11/6+δ). �
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