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n-ARY HYPERGROUPS ASSOCIATED

WITH n-ARY RELATIONS

Seid Mohammad Anvariyeh and Somayyeh Momeni

Abstract. The notion of n-ary algebraic hyperstructures is a general-
ization of ordinary algebraic hyperstructures. In this paper, we associate
an n-ary hypergroupoid (H, f) with an (n+ 1)-ary relation ρn+1 defined
on a non-empty set H. Then, we obtain some basic results in this re-
spect. In particular, we investigate when it is an n-ary Hv-group, an
n-ary hypergroup or a join n-ary space.

1. Introduction and basic definitions

Algebraic hyperstructures represent a natural extension of classical alge-
braic structures and they were introduced by Marty [14]. The connections
between hyperstructures and binary relations have been analyzed by many re-
searchers, such as Corsini [1], Corsini and Leoreanu [2], De Salvo and Lo Faro
[7, 8], Leoreanu and Leoreanu [13], Rosenberg [16], Rasouli and Davvaz [15],
Spartalis [17], Spartalis and Mamaloukas [18] and so on. n-ary generalizations
of algebraic structures is the most natural way for further development and
deeper understanding of their fundamental properties. In [6], Davvaz and Vou-
giouklis introduced the concept of n-ary hypergroups as a generalization of
hypergroups in the sense of Marty. Also, we can consider n-ary hypergroups
as a nice generalization of n-ary groups. In [11], Leoreanu-Fotea and Davvaz
introduced and studied the notion of a partial n-ary hypergroupoid associated
with a binary relation. Some important results concerning Rosenberg partial
hypergroupoids, induced by relations, are generalized to the case of n-ary hy-
pergroupoids. Then, n-ary hypergroups associated with union, intersection,
products of relations and also mutually associative n-ary hypergroupoids are
analyzed. Also, in [5], they investigated binary relations on ternary semihyper-
groups and studied some basic properties of binary relations on them. Davvaz
and et al. in [4] considered a class of algebraic hypersystems which represent
a generalization of semigroups, semihypergroups and n-ary semigroups. In
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[12], Leoreanu-Fotea and Davvaz studied the rough sets within the context of
the commutative n-ary hypergroups. In [3], Cristea and Stefanescu extended
some results on the hypergroups connected with binary relations to the case
of n-ary relations. In particular, they established some connections between
hypergroupoids associated with n-ary relations and hypergroupoids associated
with binary or ternary relations.

Let H be a non-empty set and f a mapping f : Hn −→ ℘∗(H), where ℘∗(H)
is the set of all non-empty subsets of H . Then, f is called an n-ary hyperop-
eration on H . We denoted by Hn the Cartesian product H × · · · ×H, where
H appears n times and an element of Hn will be denoted by (x1, . . . , xn),
such that xi ∈ H for any i with 1 ≤ i ≤ n. In general, a mapping f :
Hn −→ ℘∗(H) is called an n-ary hyperoperation and n is called the arity
of hyperoperation. Let f be an n-ary hyperoperation on H and A1, . . . , An

be non-empty subsets of H . We define f(A1, . . . , An) = ∪{f(x1, . . . , xn)|xi ∈
Ai, i = 1, . . . , n}. We shall use the following abbreviated notation: the se-

quence xi, xi+1, . . . , xj will be denoted by xj
i . Also, for every a ∈ H, we write

f(a, . . . , a
︸ ︷︷ ︸

n

) = f(
(n)
a ) and for j < i, xj

i is the empty set. In this conven-

tion f(x1, . . . , xi, yi+1, . . . , yj, xj+1, . . . , xn) will be written f(xi
1, y

j
i+1, x

n
j+1). A

non-empty set H with an n-ary hyperoperation f : Hn −→ ℘∗(H) will be
called an n-ary hypergroupoid and will be denote by (H, f). An n-ary hy-
pergroupoid (H, f) is commutative if for all σ ∈ Sn and for every an1 ∈ H ,

we have f(an1 ) = f(a
σ(n)
σ(1) ). An n-ary hypergroupoid (H, f) is called an n-ary

semihypergroup if for any i, j ∈ {1, 2, . . . , n} and a2n−1
1 ∈ H , we have

f(ai−1
1 , f(an+i−1

i ), a2n−1
n+i ) = f(aj−1

1 , f(an+j−1
j ), a2n−1

n+j ) (associative law).

An n-ary hypergroupoid (H, f), in which the equation b ∈ f(ai−1
1 , xi, a

n
i+1)

has a solution xi ∈ H for every a1, . . . , ai−1, ai+1, . . . , an, b ∈ H and 1 ≤ i ≤ n,
is called a quasi n-ary hypergroup. A quasi n-ary hypergroup (H, f) with the
associative law is called an n-ary hypergroup. An n-ary hypergroupoid (H, f)
is called an n-ary Hv-semigroup if the following week associative axiom holds:

2n−1⋂

i=1

f(xi−1
1 , f(xn+i−1

i ), x2n−1
n+i ) 6= ∅

for any x1, x2, . . . , x2n−1 ∈ H . An n-ary Hv-semigroup (H, f) in which is a
quasi n-ary hypergroup is called an n-ary Hv-group. Note that the notion of
n-ary Hv-group is a generalization of Hv-group [20, 21].

2. n-ary relations

In this section, we present some basic results about the n-ary relations.
Suppose that H is a non-empty set and ρ ⊆ Hn is an n-ary relation on H . We
recall the following definition from [3].
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Definition 2.1. The relation ρ is said to be
(1) reflexive, if for any x ∈ H , the n-tuple (x, . . . , x) ∈ ρ;
(2) n-transitive if it has the following property: if (x1, . . . xn) ∈ ρ, (y1, . . . yn)

∈ ρ hold and if there exist natural numbers i0 > j0 such that 1 < i0 ≤ n,
1 ≤ j0 < n, xi0 = yj0 , then the n-tuple (xi1 , . . . , xik , yjk+1

, . . . , yjn) ∈ ρ, for
any natural number 1 ≤ k < n and i1, . . . , ik, jk+1, . . . , jn such that 1 ≤ i1 <
. . . < ik < i0, j0 < jk+1 < . . . < jn ≤ n;

(3) symmetric if (x1, x2, . . . , xn) ∈ ρ implies (xn, xn−1, . . . , x1) ∈ ρ;
(4) strongly symmetric if (x1, x2, . . . , xn) ∈ ρ implies (xσ(1), . . . , xσ(n)) ∈ ρ

for any permutation σ of the set {1, . . . , n};
(5) n-ary preordering on H if it is reflexive and n-transitive;
(6) n-equivalence on H if it is reflexive, strongly symmetric and n-transitive.

Example 1. Let H = C (complex numbers) and (x1, . . . , xn) ∈ ρ when |x1| =
|x2| = · · · = |xn|. Then, ρ is reflexive, strongly symmetric and n-transitive.

Example 2. Let H = N (natural numbers) and (x1, . . . , xn) ∈ ρ when x1 <
x2 < · · · < xn. It is easily to see that ρ is n-transitive but it is not reflexive
and strongly symmetric.

Definition 2.2. Let ρ be an n-ary relation on a set H . For any x ∈ H and
any i ∈ {1, . . . , n} and k ∈ {1, . . . , n− (i+ 1)}, we define:

Li(x) = {y ∈ H | ∃u1, . . . , un−2 ∈ H : (y, u1, . . . , ui−1, x, ui, . . . , un−2) ∈ ρ

∨ (u1, . . . , uk, y, uk+1, . . . , uk+i−1, x, uk+i, . . . , un−2) ∈ ρ},

and

Ri(x) = {y ∈ H | ∃u1, . . . , un−2 ∈ H : (x, u1, . . . , ui−1, y, ui, . . . , un−2) ∈ ρ

∨ (u1, . . . , uk, x, uk+1, . . . , uk+i−1, y, uk+i, . . . , un−2) ∈ ρ}.

Example 3. In Example 1, for any x ∈ H and i ∈ {2, . . . , n− 1}, we have

Li(x) = Ri(x) = {z ∈ C| |z| = |x|}.

Example 4. In Example 2, for any x ∈ H and i ∈ {1, . . . , n}, we have

Li(x) = {y ∈ N|y < x+ i},

Ri(x) = {y ∈ N|y > x+ i}.

Remark 1. Let ρ be an n-ary relation on a set H . Then, it is obvious that

(1) y ∈ Li(x) if and only if x ∈ Ri(y) for any (x, y) ∈ H2 and any i
∈ {1, . . . , n}.

(2) Li(H) =
⋃

x∈H Li(x) 6= H if and only if there exists y ∈ H such that
Ri(y) = ∅,

(3) Ri(H) =
⋃

x∈H Ri(x) 6= H if and only if there exists y ∈ H such that
Li(y) = ∅,

(4) x /∈ Li(H) if and only if Ri(x) = ∅,
(5) x /∈ Ri(H) if and only if Li(x) = ∅.



510 SEID MOHAMMAD ANVARIYEH AND SOMAYYEH MOMENI

Indeed,
⋃

x∈H Li(x) 6= H if there exists y ∈ H such that y /∈
⋃

x∈H Li(x),
which is equivalent to the fact there exists y ∈ H such that y /∈ Li(x) for any
x ∈ H , equivalent to the fact that there exists y ∈ H such that Ri(y) = ∅.

Definition 2.3. Let ρ be an n-ary relation on the non-empty set H . Set
m = [n+1

2 ]. We define on H the following n-ary hyperoperation:

fρ(x1, . . . , xn) =
m⋃

i=1

Li(xi) ∪
m⋃

i=1

Ri(xn−i+1).

We notice that if (H, fρ) is an n-ary hypergroupoid, then Li(x) 6= ∅ or
Ri(x) 6= ∅ for some x ∈ H and i ∈ {1, . . . ,m}.

Theorem 2.4. Let ρ be an n-ary relation on the non-empty set H. The n-ary
hypergroupoid (H, fρ) is a quasi n-ary hypergroup if and only if for any x ∈ H
and any 1 ≤ i ≤ m, Li(x) 6= ∅ and Ri(x) 6= ∅.

Proof. Let for any x ∈ H and for any 1 ≤ i ≤ m, Li(x) 6= ∅ and Ri(x) 6= ∅.
Then, Li(H) = H and Ri(H) = H . So, for every x1, . . . , xn ∈ H , we have

fρ(H,x2, . . . , xn)

= L1(H) ∪ L2(x2) ∪ · · · ∪ Lm(xm) ∪R1(xn) ∪ · · · ∪Rm(xn−m+1) = H,

fρ(x1, H, . . . , xn)

= L1(x1) ∪ L2(H) ∪ · · · ∪ Lm(xm) ∪R1(xn) ∪ · · · ∪Rm(xn−m+1) = H,

...

fρ(x1, . . . , H, xn)

= L1(x1) ∪ · · · ∪ Lm(xm) ∪R1(xn) ∪R2(H) ∪ · · · ∪Rm(xn−m+1) = H,

fρ(x1, . . . , xn−1, H)

= L1(x1) ∪ · · · ∪ Lm(xm) ∪R1(H) ∪R2(xn−1) ∪ · · ·

∪Rm−1(xn−m+2) ∪Rm(xn−m+1) = H.

Thus, (H, fρ) is reproductive, so it is a quasi n-ary hypergroup.
Conversely, suppose that (H, fρ) is a quasi n-ary hypergroup and for some

i ∈ {1, . . . ,m}, there exists x ∈ H such that Li(x) = ∅ or Ri(x) = ∅.
If Li(x) = ∅, then x /∈ Ri(H). Also, it easy to see that for any j ∈ {1, . . . ,m},

x /∈ Lj(x) (also x /∈ Rj(x)). Therefore,

x /∈ L1(x) ∪ · · · ∪ Lm(x) ∪R1(x) ∪ · · · ∪Ri(H) ∪ · · · ∪Rm(x)

= fρ(x, . . . , H, . . . , x) = H,

where H is in the i-place and this contradicts the reproducibility low. If Ri(x)
= ∅, the similar argument implies a contradiction. �

Example 5. Let H = {1, 2, 3, 4} and

ρ = {(1, 1, . . . , 1
︸ ︷︷ ︸

n−1

, 2), (3, 1, 1, . . . , 1
︸ ︷︷ ︸

n−2

, 3), (2, 3, . . . , 3
︸ ︷︷ ︸

n−2

, 1),
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(2, . . . , 2
︸ ︷︷ ︸

n−1

, 3), (3, 4, . . . , 4
︸ ︷︷ ︸

n−1

), (4, . . . , 4
︸ ︷︷ ︸

n−1

, 1)}.

Now, for any x ∈ H and 1 ≤ i ≤ m, we have

L1 L2 L3 . . . Lm R1 R2 . . . Rm

1 {1,3,4} {1,3,4} {1,3,4} . . . {1,3,4} {1,2,3} {1,2,3} . . . {1,2,3}
2 {1,2} {1,2} {1,2} . . . {1,2} {2,3} {2,3} . . . {2,3}
3 {1,2} {1,2} {1,2} . . . {1,2} {1,4} {1,4} . . . {1,4}
4 {3,4} {3,4} {3,4} . . . {3,4} {1,4} {1,4} . . . {1,4}

Li(H) = Li(1) ∪ Li(2) ∪ Li(3) ∪ Li(4) = {1, 2, 3, 4},

Ri(H) = Ri(1) ∪Ri(2) ∪Ri(3) ∪Ri(4) = {1, 2, 3, 4}.

Also,

fρ(H,x2, . . . , xn)

= (L1(H) =
⋃

x∈H

L1(x)) ∪ L2(x2) ∪ · · · ∪ Lm(xm) ∪R1(xn)∪

· · · ∪Rm(xn−m+1)

= {1, 2, 3, 4} ∪ L2(x2) ∪ · · · ∪ Lm(xm) ∪R1(xn) ∪ . . . ∪Rm(xn−m+1) = H,

fρ(x1, H, . . . , xn)

= L1(x1) ∪ (L2(H) =
⋃

x∈H

L2(x)) ∪ · · · ∪ Lm(xm) ∪R1(xn)∪

· · · ∪Rm(xn−m+1)

= L1(x1) ∪ {1, 2, 3, 4} ∪ · · · ∪ Lm(xm) ∪R1(xn) ∪ · · · ∪Rm(xn−m+1) = H,

...

fρ(x1, . . . , H, xn)

= L1(x1) ∪ · · · ∪ Lm(xm) ∪R1(xn) ∪ (R2(H) =
⋃

x∈H

R2(x))∪

· · · ∪Rm(xn−m+1)

= L1(x1) ∪ · · · ∪ Lm(xm) ∪R1(xn) ∪ {1, 2, 3, 4} ∪ · · · ∪Rm(xn−m+1) = H,

fρ(x1, . . . , xn−1, H)

= L1(x1) ∪ · · · ∪ Lm(xm) ∪ (R1(H) =
⋃

x∈H

R1(x)) ∪R2(xn−1)∪

· · · ∪Rm(xn−m+1)

= L1(x1) ∪ · · · ∪ Lm(xm) ∪ {1, 2, 3, 4} ∪R2(xn−1) ∪ · · · ∪Rm(xn−m+1) = H.

Therefore, the n-ary hypergroupoid (H, fρ) is a quasi n-ary hypergroup.
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Theorem 2.5. Let ρ be an n-ary relation on the non-empty set H. The n-ary
hypergroupoid (H, fρ) is an n-ary Hv-group if and only if, for any x ∈ H and

i ∈ {1, . . . ,m}, Li(x) 6= ∅ and Ri(x) 6= ∅.

Proof. If (H, fρ) is an n-ary Hv-group, then it is a quasi n-ary hypergroup and
by Theorem 2.4, it follows that for any x ∈ H and i ∈ {1, . . . ,m}, Li(x) 6= ∅
and Ri(x) 6= ∅.

Conversely, suppose that for any x ∈ H and i ∈ {1, . . . ,m}, Li(x) 6= ∅ and
Ri(x) 6= ∅. By Theorem 2.4, it follows that (H, fρ) is a quasi n-ary hypergroup.
It remains to prove that the n-ary hyperoperation fρ is weakly associative. For

this, we show that, for any x2n−1
1 ∈ H ,

2n−1⋂

i=1

fρ(x
i−1
1 , fρ(x

n+i−1
i ), x2n−1

n+i ) 6= ∅.

We have
(i1)

fρ(fρ(x1, . . . , xn), xn+1, . . . , x2n−1)

= {L1(u) ∪ L2(xn+1) ∪ · · · ∪ Lm(xn+m−1) ∪R1(x2n−1) ∪ · · · ∪Rm(x2n−m) |

u ∈ L1(x1) ∪ · · · ∪ Lm(xm) ∪R1(xn) ∪ · · · ∪Rm(xn−m+1)}

⊇ {L1(u) | u ∈ L1(x1) ∪ · · · ∪ Lm(xm) ∪R1(xn) ∪ · · · ∪Rm(xn−m+1)}

⊇ {L1(u) | u ∈ R1(xn)} = {L1(u)|xn ∈ L1(u)} ∋ xn,

(i2)

fρ(x1, fρ(x2, . . . , xn+1), xn+2, . . . , x2n−1)

= {L1(x1) ∪ L2(u) ∪ . . . ∪ Lm(xn+m−1) ∪R1(x2n−1) ∪ · · · ∪Rm(x2n−m) |

u ∈ L1(x2) ∪ · · · ∪ Lm(xm+1) ∪R1(xn+1) ∪ · · · ∪Rm(xn−m+2)}

⊇ {L1(u) | u ∈ L1(x2) ∪ · · · ∪ Lm(xm+1) ∪R1(xn+1) ∪ · · · ∪Rm(xn−m+2)}

⊇ {L2(u) | u ∈ R2(xn)} = {L2(u)|xn ∈ L2(u)} ∋ xn,

...

(in−1)

fρ(x1, . . . , xn−2, fρ(xn−1, . . . , x2n−2), x2n−1)

= {L1(x1) ∪ · · · ∪ Lm(xm) ∪R1(x2n−1) ∪R2(u) ∪ · · · ∪Rm(xn−m+1) |

u ∈ L1(xn−1) ∪ · · · ∪ Lm(xn+m−2) ∪R1(x2n−2) ∪ · · · ∪Rm(x2n−m−1)}

⊇ {R2(u) | u ∈ L1(xn−1) ∪ · · · ∪ Lm(xn+m−2) ∪R1(x2n−2)∪

· · · ∪Rm(x2n−m−1)}

⊇ {R2(u) | u ∈ L2(xn)} = {R2(u)|xn ∈ R2(u)} ∋ xn,

(in)

fρ(x1, . . . , xn−1, fρ(xn, . . . , x2n−1))
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= {L1(x1) ∪ · · · ∪ Lm(xm) ∪R1(u) ∪R2(xn−1) ∪ · · · ∪Rm(xn−m+1) |

u ∈ L1(xn) ∪ · · · ∪ Lm(xn+m−1) ∪R1(x2n−1) ∪ · · · ∪Rm(x2n−m)}

⊇ {R1(u) | u ∈ L1(xn) ∪ · · · ∪ Lm(xn+m−1) ∪R1(x2n−1) ∪ · · · ∪Rm(x2n−m)}

⊇ {R1(u) | u ∈ L1(xn)} = {R1(u)|xn ∈ R1(u)} ∋ xn.

It follows that (H, fρ) is an n-ary Hv-group. �

Example 6. Let H = {1, 2, 3} and ρ = {(1, . . . , 1
︸ ︷︷ ︸

n−2

, 2, 1), (2, 3, . . . , 3
︸ ︷︷ ︸

n−1

), (2, . . . , 2
︸ ︷︷ ︸

n

)}

be an n-ary relation on H . Now, we have:

L1 L2 L3 . . . Lm R1 R2 . . . Rm

1 {1, 2} {1} {1} . . . {1} {1, 2} {1, 2} . . . {1, 2}
2 {1, 2} {1, 2} {1, 2} . . . {1, 2} {1, 2, 3} {2, 3} . . . {2, 3}
3 {2} {2, 3} {2, 3} . . . {2, 3} {3} {3} . . . {3}

Also,

fρ(fρ(1, . . . , 1
︸ ︷︷ ︸

n

), 1, . . . , 1
︸ ︷︷ ︸

n−1

) = fρ({1, 2}, 1, . . . , 1) = {1, 2},

fρ(1, . . . , 1
︸ ︷︷ ︸

n−1

, fρ(1, . . . , 1
︸ ︷︷ ︸

n

)) = fρ(1, . . . , 1
︸ ︷︷ ︸

n−1

, {1, 2}) = {1, 2, 3}.

This example shows that for every x ∈ H and for any i ∈ {1, . . . ,m},
Li(x) 6= ∅, Ri(x) 6= ∅ and (H, fρ) is an n-ary Hv-group but it is not an n-ary
hypergroup.

Corollary 2.6. Let ρ be an n-ary relation on a set H. The n-ary hypergroupoid
(H, fρ) is an n-ary Hv-group if and only if it is a quasi n-ary hypergroup.

Lemma 2.7. Let ρ be an n-ary preordering on a set H. Then, for any a, x, u ∈
H and i ∈ {1, . . . , n − 1}, such that a ∈ Li(u) [a ∈ Ri(u)] and u ∈ Li(x)
[u ∈ Ri(x)], it follows that a ∈ Li(x) [a ∈ Ri(x)].

Proof. Let a, x, u ∈ H such that a ∈ Li(u) and u ∈ Li(x). Then, there exist
a1, . . . , an−2, b1, . . . , bn−2 ∈ H such that (a, a1, . . . , ai−1, u, ai, . . . , an−2) ∈ ρ or
(a1, . . . , ak, a, ak+1, . . . , ak+i−1, u, ak+i . . . , an−2) ∈ ρ for any k ∈ {1, . . . , n−i−
1}. Also, we have (u, b1, . . . , bi−1, x, bi, . . . , bn−2) ∈ ρ or (b1, . . . , bh, u, bh+1, . . .,
bh+i−1, x, bh+i . . . , bn−2) ∈ ρ for any h ∈ {1, . . . , n − i − 1}. In the all of
the situations, by n-transitivity, we have a ∈ Li(x). In the similar way from
a ∈ Ri(u) and u ∈ Ri(x) implies a ∈ Ri(x). �

Definition 2.8 ([11]). Let (H, fρ) be a commutative n-ary hypergroup. For

a, b1, . . . , bn−1 ∈ H , we denote a/bn−1
1 = {x | a ∈ fρ(x, b1, . . . , bn−1)}. We say

that the commutative n-ary hypergroup (H, fρ) is a join n-ary space, if for any
a, c, b1, b2, . . . , bn−1, d1, d2, . . . , dn−1 ∈ H, the following implication holds:

a/bn−1
1 ∩ c/dn−1

1 6= ∅ ⇒ fρ(a, d1, . . . , dn−1) ∩ fρ(b1, . . . , bn−1, c) 6= ∅.
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Example 7. Let ρ = {(x, x, . . . , x)|x ∈ H} be the diagonal n-ary relation on a
set H . Then, (H, fρ) is a join n-ary space. In fact, for any i ∈ {1, . . . ,m} and
x ∈ H , we obtain Li(x) = Ri(x) = {x} and thus, for any xn

1 ∈ H , it follows that
fρ(x1, . . . , xn) = fρ(xσ(1), . . . , xσ(n)) = {x1, . . . , xn}. Also, for any xn

1 ∈ H ,
fρ(H,x2, . . . , xn) = fρ(x1, H, x3, . . . , xn) = . . . = fρ(x1, . . . , xn−1, H) = H.

Moreover, for any x2n−1
1 ∈ H ,

(i1) fρ(fρ(x1, . . . , xn), xn+1, . . . , x2n−1)

= fρ({x1, . . . , xn}, xn+1, . . . , x2n−1) = {x1, . . . , xn, xn+1, . . . , x2n−1},

(i2) fρ(x1, fρ(x2, . . . , xn+1), xn+2, . . . , x2n−1)

= fρ(x1, {x2 . . . , xn+1}, xn+2, . . . , x2n−1) = {x1, . . . , xn, xn+1, . . . , x2n−1},

...

(in) fρ(x1, , xn−1, fρ(xn, . . . , x2n−1))

= fρ(x1, . . . , xn−1, {xn, . . . , x2n−1}) = {x1, . . . , xn, xn+1, . . . , x2n−1}.

So, (H, fρ) is a commutative n-ary hypergroup. It remains to prove that, for
any a, c, b1, b2, . . . , bn−1, d1, d2, . . . , dn−1 ∈ H ,

a/bn−1
1 ∩ c/dn−1

1 6= ∅ ⇒ fρ(a, d1, . . . , dn−1) ∩ fρ(b1, . . . , bn−1, c) 6= ∅.

We obtain that

a/a, b1, . . . , bn−2

= {x ∈ H |a ∈ fρ(x, a, b1, . . . , bn−2)}

= {x ∈ H |a ∈ L1(x) ∪ L2(a) ∪ L3(b1) ∪ · · · ∪ Lm(bm−2) ∪R1(bn−2)∪

· · · ∪Rm(bn−m−1)}

= H,

a/b1, a, b2, . . . , bn−2

= {x ∈ H |a ∈ fρ(x, b1, a, b2, . . . , bn−2)}

= {x ∈ H |a ∈ L1(x) ∪ L2(b1) ∪ L3(a) ∪ L4(b2) ∪ · · · ∪ Lm(bm−2) ∪R1(bn−2)∪

· · · ∪Rm(bn−m−1)}

= H,

...

a/b1, b2, . . . , bn−2, a

= {x ∈ H |a ∈ fρ(x, b1, . . . , bn−2, a)}

= {x ∈ H |a ∈ L1(x) ∪ L2(b1) ∪ . . . ∪ Lm(bm−1) ∪R1(a) ∪ · · · ∪Rm(bn−m)}

= H.

If a 6= b1, . . . , bn−1, then a/b1, . . . , bn−1 = {x ∈ H | a ∈ fρ(x, b1, . . . , bn−1)}
= {x ∈ H | a ∈ {x, b1, . . . , bn−1}} = {a}. Let a, c, b1, b2, . . . , bn−1, d1, d2, . . .,
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dn−1 ∈ H , a/bn−1
1 ∩ c/dn−1

1 6= ∅. If there exist i, j ∈ {1, 2, . . . , n − 1} such
that a = bi or c = dj , then a ∈ fρ(a, d1, . . . , dn−1) ∩ fρ(b1, . . . , bn−1, c) or
a ∈ fρ(a, d1, . . . , dn−1) ∩ fρ(b1, . . . , bn−1, c). If a 6= b1, . . . , bn−1 and c 6=
d1, . . . , dn−1, then fρ(a, d1, . . . , dn−1) ∩ fρ(b1, . . . , bn−1, c) 6= ∅ if and only if
a = c and thus a ∈ fρ(a, d1, . . . , dn−1) ∩ fρ(b1, . . . , bn−1, c). In both cases
fρ(a, d1, . . . , dn−1)∩fρ(b1, . . . , bn−1, c) 6=∅. Therefore, n-ary hypergroup (H, fρ)
is a join n-ary space.

Theorem 2.9. If ρ is an n-ary preordering on a set H such that Li(x) = Rj(x)
for any x ∈ H and 1 ≤ i, j ≤ m, then (H, fρ) is a join n-ary space.

Proof. Set Li(x) = Rj(x) = L(x). Since ρ is reflexive, it follows by Theorem
2.4, that (H, fρ) is a quasi n-ary hypergroup. Moreover, since Li(x) = Rj(x)
for any x ∈ H and 1 ≤ i, j ≤ m, it follows that

fρ(x1, . . . , xn) = L1(x1) ∪ · · · ∪ Lm(xm) ∪R1(xn) ∪ · · · ∪Rm(xn−m+1)

= L(x1) ∪ · · · ∪ L(xm) ∪ L(xm+1) ∪ · · · ∪ L(xn)

=
n⋃

i=1

L(xi)

and this implies that fρ(x1, . . . , xn) = fρ(xσ(1), . . . , xσ(n)) for any xn
1 ∈ H and

for any permutation σ ∈ {1, . . . , n}. Therefore, (H, fρ) is commutative. Now,
we prove that the n-ary hyperoperation fρ is associative, that means for any

i, j ∈ {1, 2, . . . , n} and a2n−1
1 ∈ H , we have

fρ(a
i−1
1 , fρ(a

n+i−1
i ), a2n−1

n+i ) = fρ(a
j−1
1 , fρ(a

n+j−1
j ), a2n−1

n+j ).

For any a ∈ fρ(fρ(x1, . . . , xn), xn+1, . . . , x2n−1), there exists

u ∈ L1(x1) ∪ · · · ∪ Lm(xm) ∪R1(xn) ∪ · · · ∪Rm(xn−m+1)

= L(x1) ∪ · · · ∪ L(xm) ∪ L(xn) ∪ · · · ∪ L(xn−m+1),

such that a ∈ L(u) ∪L(xn+1) ∪ · · · ∪ L(xn+m−1) ∪ L(x2n−1) ∪ · · · ∪ L(x2n−m).
Moreover,
(∗)

fρ(x1, fρ(x2, . . . , xn+1), xn+2, . . . , x2n−1)

= {L(x1) ∪ L(v) ∪ L(xn+2) ∪ . . . ∪ L(x2n−1) | v ∈ L(x2) ∪ . . . ∪ L(xn+1)}.

We distinguish the following cases:

(i1) If a ∈ L(u) and u ∈ L(x1), by Lemma 2.7, a ∈ L(x1). Therefore, we
have a ∈ fρ(x1, fρ(x2, . . . , xn+1), xn+2, . . . , x2n−1).

(i2) If a ∈ L(u) and u ∈ L(x2), then by (∗), a ∈ fρ(x1, fρ(x2, . . . , xn+1),
xn+2, . . . , x2n−1).

...
(in) If a ∈ L(u) and u ∈ L(xn), then a ∈ fρ(x1, fρ(x2, . . . , xn+1), xn+2, . . .,

x2n−1).
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(in+1) If a ∈ L2(xn+1) = L(xn+1), then there exist b1, . . . , bn−2 ∈ H such
that (a, b1, xn+1, b2, . . . , bn−2) ∈ ρ or (b1, . . . , bk, a, bk+1, xn+1, bk+2, . . .,
bn−2) ∈ ρ for any k ∈ {1, 2, . . . , n− 3}. For example, if (a, b1, xn+1, b2,
. . . , bn−2) ∈ ρ, then b2 ∈ R1(xn+1) = L(xn+1), so xn+1 ∈ R(b2) =
L(b2). a ∈ L(xn+1) and xn+1 ∈ L(b2), by Lemma 2.7, a ∈ L(b2). a ∈
L(b2) and b2 ∈ L(xn+1) from (∗) implies a ∈ fρ(x1, fρ(x2, . . . , xn+1),
xn+2, . . . , x2n−1).

(in+2) If a ∈ L(xn+2), then by (∗), we have a ∈ fρ(x1, fρ(x2, . . . , xn+1), xn+2,
. . . , x2n−1).

...
(i2n−1) If a ∈ L(x2n−1), then by (∗) we have a ∈ fρ(x1, fρ(x2, . . . , xn+1),

xn+2, . . . , x2n−1).

The proofs of the other inclusions are similar and with long computations. It
remains to check the condition of the join n-ary space. Set a, b1, . . . , bn−1, c, d1,
. . . , dn−1 ∈ H such that a/bn−1

1 ∩ c/dn−1
1 6= ∅. Then, there exists x ∈ a/bn−1

1 ∩
c/dn−1

1 . Hence,

x ∈ a/bn−1
1 ⇒ a ∈ fρ(x, b1, . . . , bn−1) = L(x) ∪ L(b1) ∪ · · · ∪ L(bn−1),

x ∈ c/dn−1
1 ⇒ c ∈ fρ(x, d1, . . . , dn−1) = L(x) ∪ L(d1) ∪ · · · ∪ L(dn−1).

Now, we consider the following situations:

1 a ∈ L(x), c ∈ L(x) ⇒ x ∈ L(a), x ∈ L(c) ⇒ x ∈ [L(a) ∪ L(d1) ∪
· · · ∪ L(dn−1)] ∩ [L(b1) ∪ · · · ∪ L(bn−1) ∪ L(c)] = fρ(a, d1, . . . , dn−1) ∩
fρ(b1, . . . , bn−1, c).

2 If a ∈ L(x) and c ∈ L(di), i ∈ {1, . . . , n − 1}. Since c ∈ L(c) (by
reflexivity), it follows that

c ∈ [L(a) ∪ L(d1) ∪ . . . ∪ L(dn−1)] ∩ [L(b1) ∪ . . . ∪ L(bn−1) ∪ L(c)].

3 If a ∈ L(bi) and c ∈ L(x), i ∈ {1, . . . , n − 1}, then bi ∈ R(a) = L(a).
Since bi ∈ L(bi) (by reflexivity), it follows that

bi ∈ [L(a) ∪ L(d1) ∪ . . . ∪ L(dn−1)] ∩ [L(b1) ∪ . . . ∪ L(bn−1) ∪ L(c)].

4 If a ∈ L(bi) and c ∈ L(dj), i, j ∈ {1, . . . , n− 1}, then bi ∈ R(a) = L(a),
since bi ∈ L(bi) (by reflexivity), it follows that

bi ∈ [L(a) ∪ L(d1) ∪ . . . ∪ L(dn−1)] ∩ [L(b1) ∪ . . . ∪ L(bn−1) ∪ L(c)].

Since for a, b1, . . . , bn−1, c, d1, . . . , dn−1 ∈ H such that a/bn−1
1 ∩ c/dn−1

1 6= ∅,
we have fρ(a, d1, . . . , dn−1) ∩ fρ(b1, . . . , bn−1, c) 6= ∅, so (H, fρ) is a join n-ary
space. �

Remark 2. Let ρ be an n-ary reflexive relation on a set H . By Lemma 2.7, if
ρ is n-transitive, then ρ satisfies the following property:
(T)

for any a, x, u ∈ H and i∈{1, . . . , n− 1} such that a∈Li(u) [a ∈ Ri(u)]

and u∈Li(x) [u∈Ri(x)], it follows that a∈Li(x) [a∈Ri(x)].
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Theorem 2.10. Let ρ be an n-ary relation on H such that x ∈ Li(x) = Rj(x)
for any x ∈ H and 1 ≤ i, j ≤ m. If ρ satisfies the properties (T), then fρ is

associative and so (H, fρ) is a join n-ary spaces.

Proof. The reproducibility follows from Theorem 2.4. Suppose that fρ is not

associative. Then, there exists x2n−1
1 such that fρ(fρ(x1, . . . , xn), xn+1, . . .,

x2n−1) is not equal to

fρ(x1, fρ(x2, . . . , xn+1), xn+2, . . . , x2n−1) or
fρ(x1, x2, fρ(x3, . . . , xn+2), xn+3, . . . , x2n−1) . . . or
fρ(x1, . . . , xn−1, fρ(xn, . . . , x2n−1)).

Suppose that there exists u ∈ fρ(fρ(x1, . . . , xn), xn+1, . . . , x2n−1) such that

u /∈ fρ(x1, fρ(x2, . . . , xn+1), xn+2, . . . , x2n−1)

or vice versa. We consider the first situation: it follows that there exists
t ∈ fρ(x1, . . . , xn) such that u ∈ L(t) ∪ L(xn+1) ∪ · · · ∪ L(x2n−1) and for any
s ∈ fρ(x2, . . . , xn+1), u /∈ L(x1) ∪ L(s) ∪ L(xn+2) ∪ · · · ∪ L(x2n−1). Now, we
distinguish the following situation:

(1) If u ∈ L(t) and t ∈ L(x1), then u ∈ L(x1), so u ∈ L(x1)∪· · ·∪L(x2n−1).
(2) If u ∈ L(t) and t ∈ L(x2), then u ∈ L(x2). Since x2 ∈ fρ(x2, . . . , xn+1).

Thus, u ∈ L(x1) ∪ L(x2) ∪ L(xn+2) ∪ · · · ∪ L(x2n−1).
...

(n) If u ∈ L(t) and t ∈ L(xn), then u ∈ L(xn). Since xn ∈ fρ(x2, . . . , xn+1),
u ∈ L(x1) ∪ L(xn) ∪ L(xn+2) ∪ · · · ∪ L(x2n−1).

(n+ 1) If u ∈ L(xn+1), then u ∈ L(x1) ∪ L(xn+1) ∪ · · · ∪ L(x2n−1), since
xn+1 ∈ fρ(x2, . . . , xn+1),

(n+ 2) If u ∈ L(xn+2), then u ∈ L(x1) ∪ L(s) ∪ L(xn+2) ∪ · · · ∪ L(x2n−1).
...

(2n− 1) If u ∈ L(x2n−1), then u ∈ L(x1) ∪ L(s) ∪ L(xn+2) ∪ · · · ∪ L(x2n−1).

For the all cases, we obtain a contradiction with the fact

u /∈ L(x1) ∪ L(s) ∪ L(xn+2) ∪ · · · ∪ L(x2n−1)

for any s ∈ fρ(x2, . . . , xn+1). The proofs of the other inclusions are similar.
Therefore, fρ is associative. �

Example 8. Let H = {0, 1, 2} and

ρ = {(0, . . . , 0
︸ ︷︷ ︸

n

), (1, 2, . . . , 1, 2), (2, 1, . . . , 2, 1), (1, . . . , 1
︸ ︷︷ ︸

n−1

, 2), (2, . . . , 2
︸ ︷︷ ︸

n−1

, 1).

Then, we have

L1 L2 L3 . . . Lm R1 R2 . . . Rm

0 {0} {0} {0} . . . {0} {0} {0} . . . {0}
1 {1, 2} {1, 2} {1, 2} . . . {1, 2} {1, 2} {1, 2} . . . {1, 2}
2 {1, 2} {1, 2} {1, 2} . . . {1, 2} {1, 2} {1, 2} . . . {1, 2}
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for every x ∈ H and 1 ≤ i, j ≤ m, we have Li(x) = Rj(x). So,

fρ(x1, . . . , xn) =







{0} if {x1, . . . , xn} = {0},
{1, 2} if {x1, . . . , xn} ⊆ {1, 2},
{0, 1, 2} otherwise.

It is not difficult to see that (H, fρ) is a join n-ary space.

3. n-ary Hv-groups associated with n-ary relations

Given an n-ary hypergroupoid (H, f), we may consider the (n+1)-ary rela-
tion ρk on H associated with the n-ary hyperoperation f as follows

(x1, . . . , xn+1) ∈ ρk ⇔ xk ∈ f(xk−1
1 , xn+1

k+1).

This is the most natural way to define an (n+ 1)-ary relation associated with
an n-ary hyperoperation. If (H, f) is an n-ary hypergroup, then ρk satisfies
the following conditions:

(1) For all x1, . . . , xn ∈ H , there exists at least one element x ∈ H such

that (xk−1
1 , x, xn

k ) ∈ ρk.
(2) If, for x1, . . . , x2n+1, z ∈ H , there exists x ∈ H such that for any k ≤ i

and k ≤ j, we have (xk−1
1 , z, xi−1

k , x, x2n−1
n+i )∈ρk and (xi+k−2

i , x, xi+n−1
i+k−1 )

∈ ρk, then there exists y ∈ H such that (xk−1
1 , z, xj−1

k , y, x2n−1
n+j ) ∈ ρk

and (xj+k−2
j , x, xj+n−1

j+k−1 ) ∈ ρk, and conversely.

(3) If, for x1, . . . , x2n+1, z ∈ H , there exists x ∈ H such that for any k ≤ i

and k > j, we have (xk−1
1 , z, xi−1

k , x, x2n−1
n+i )∈ρk and (xi+k−2

i , x, xi+n−1
i+k−1 )

∈ ρk, then there exists y ∈ H such that (xj−1
1 , y, xn+k−2

n+j , z, x2n−1
n+k−1) ∈

ρk and (xj+k−2
j , x, xj+n−1

j+k−1 ) ∈ ρk, and conversely.

(4) If, for x1, . . . , x2n+1, z ∈ H , there exists x ∈ H such that for any

k > i and k > j, we have (xi−1
1 , y, xn+k−2

n+i , z, x2n−1
n+k−1) ∈ ρk and

(xi+k−2
i , x, xi+n−1

i+k−1 ) ∈ ρk, then there exists y ∈ H such that (xj−1
1 , y,

xn+k−2
n+j , z, x2n−1

n+k−1) ∈ ρk and (xj+k−2
j , x, xj+n−1

j+k−1 ) ∈ ρk, and conversely.

(5) For all xn
1 ∈ H and 1 ≤ i ≤ n, there exists x ∈ H such that (xi−1

1 , x, xn
i )

∈ ρk.

Conversely, if ρ is an (n+1)-ary relation on a set H such that the conditions
(1)-(5) are satisfied, then we take the n-ary hyperoperation

fk(x1, . . . , xn) = {z ∈ H | (xk−1
1 , z, xn

k ) ∈ ρ}.

Hence, (H, fk) is an n-ary hypergroup. Let σn be an n-ary relation on a set
H . We associate an (n+ 1)-ary relation denoted by σn+1 ⊆ Hn+1 as follows:

(1) (x1, . . . , xn+1) ∈ σn+1 ⇐⇒ ∀1 ≤ i ≤ n+ 1, (xi−1
1 , xn+1

i+1 ) ∈ σn.

Proposition 3.1. The unique (n+1)-ary relation σn+1 obtained from an n-ary
relation σn using the method (1) and such that

(2) (xi−1
1 , xn+1

i+1 ) ∈ Hn, ∃xi ∈ H : (x1, . . . , xn+1) ∈ σn+1
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is the total relation σn+1 = H × · · · ×H
︸ ︷︷ ︸

n+1

.

Proof. The condition (2) is equivalent to the following one: for any (x1, . . . , xn)
∈ Hn, (x1, . . . , xn)∈σn, so the n-ary relation σn is the total relationH×· · ·×H

︸ ︷︷ ︸

n

.

Thus, for any (x1, . . . , xn+1) ∈ Hn+1 and for any 1 ≤ i ≤ n + 1, we have
(xi−1

1 , xn+1
i+1 ) ∈ Hn = σn. Therefore, by using the method (1), (x1, . . . , xn+1) ∈

σn+1. So, H
n+1 ⊆ σn+1. Therefore, σn+1 = Hn+1. �

Moreover, the n-ary hypergroupoid obtained from σn+1 taking

f(xi−1
1 , xn+1

i+1 ) = {xi ∈ H |(x1, . . . , xn+1) ∈ σn+1}

is the total n-ary hypergroup on H . Conversely, with any (n+ 1)-ary relation
ρn+1 on H , we associate an n-ary relation ρn ⊆ Hn as follows:

(3) (xi−1
1 , xn+1

i+1 ) ∈ ρn ⇐⇒ ∃xi ∈ H : (x1, . . . , xn+1) ∈ ρn+1.

Let (H, f) be an arbitrary n-ary hypergroupoid which determines the (n+ 1)-
ary relation ρn+1 defined by

(x1, . . . , xn+1) ∈ ρn+1 ⇔ xi ∈ f(xi−1
1 , xn+1

i+1 ) for some 1 ≤ i ≤ n.

Proposition 3.2. The unique n-ary relation ρn obtained from an (n+ 1)-ary
relation ρn+1 using the method (3) and such that

(x1, . . . , xn+1) ∈ ρn+1 ⇔ xi ∈ f(xi−1
1 , xn+1

i+1 ),

is the total relation ρn = H × · · · ×H
︸ ︷︷ ︸

n

.

Proof. Since (H, f) is an n-ary hypergroupoid, it follows that, for any (xi−1
1 ,

xn+1
i+1 ) ∈ Hn, there exists xi ∈ H such that xi ∈ f(xi−1

1 , xn+1
i+1 ), that is

(x1, . . . , xn+1) ∈ ρn+1. Therefore, for any (xi−1
1 , xn+1

i+1 ) ∈ Hn, we obtain

(xi−1
1 , xn+1

i+1 ) ∈ ρn, that is ρn = H × · · · ×H
︸ ︷︷ ︸

n

. �

Definition 3.3. Let (H, f) be an n-ary hypergroup, such that the n-ary hy-
peroperation f is constructed by the (n + 1)-ary relation ρ, which satisfy the
conditions (1)-(3). We define an (n+ 1)-ary hyperoperation:

h(x1, . . . , xn+1) =
n+1⋃

i=1

f(xi−1
1 , xn+1

i+1 ) for all x1, . . . , xn+1 ∈ H.

Theorem 3.4. Let h be the (n+1)-ary hyperoperation in Definition 3.3. Then,
(H,h) is an (n+ 1)-ary Hv-group.

Proof. Since (H, f) is an n-ary hypergroup, (H,h) is an (n + 1)-ary hyper-
groupoid. Let x1, . . . , xn+1 ∈ H . Then, producibility of (H, f) implies that

(i1)

h(H,x2, . . . , xn+1)
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= f(x2, . . . , xn+1) ∪ f(H,x3, . . . , xn+1) ∪ . . . ∪ f(H,x2, . . . , xn) = H,

(i2)

h(x1, H, x3, . . . , xn+1)

= f(H,x3, . . . , xn+1) ∪ f(x1, x3, . . . , xn+1) ∪ . . . ∪ f(x1, H, . . . , xn) = H,

...

(in+1)

h(x1, x2, . . . , xn, H)

= f(x2, x3, . . . , xn, H) ∪ f(x1, x3, . . . , xn, H) ∪ . . . ∪ f(x1, . . . , xn) = H.

Thus, (H,h) is productive. Now, we prove that h is weakly associative. Suppose
that x2n+1

1 ∈ H . Then,
(i1)

h(h(xn+1
1 ), xn+2, . . . , x2n+1) = h(

n+1⋃

i=1

f(xi−1
1 , xn+1

i+1 ), xn+2, . . . , x2n+1)

= h(g, xn+2, . . . , x2n+1)

⊇ f(g, xn+3, . . . , x2n+1)

⊇ f(f(x2, . . . , xn+1), xn+3, . . . , x2n+1),

(i2)

h(x1, h(x
n+2
2 ), xn+3, . . . , x2n+1) = h(x1,

n+1⋃

i=1

f(xi
2, x

n+2
i+2 ), xn+3, . . . , x2n+1)

= h(x1, g, xn+3, . . . , x2n+1)

⊇ f(g, xn+3, . . . , x2n+1)

⊇ f(f(x2, . . . , xn+1), xn+3, . . . , x2n+1),

...

(in+1)

h(x1, . . . xn, h(xn+1, . . . , x2n+1)) = h(x1, . . . xn,

n+1⋃

i=1

f(xn+i−1
n+1 , x2n+1

n+i+1))

= h(x1, . . . xn, g)

⊇ f(x2, . . . , xn, g)

⊇ f(x2, . . . , xn, f(xn+1, xn+3, . . . , x2n+1)).

Therefore,
2n+1⋂

i=1

h(xi−1
1 , h(xn+i−1

i ), x2n+1
n+i ) 6= ∅.
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This implies that (n+ 1)-ary hypergroupoid (H,h) is weakly associative. �

Example 9. Let H = {a1, . . . , an} and f be an n-ary relation on H such that

f(a1, . . . , a1
︸ ︷︷ ︸

n

) = {an}, f(a2, . . . , a2
︸ ︷︷ ︸

n

) = {an−1}

...

f(an−1, . . . , an−1
︸ ︷︷ ︸

n

) = {a2}, f(an, . . . , an
︸ ︷︷ ︸

n

) = {a1}

f(a1, . . . , an) = f(a1, . . . , a1
︸ ︷︷ ︸

n

) ∪ · · · ∪ f(an, . . . , an
︸ ︷︷ ︸

n

).

Then, (H, f) is an n-ary hypergroupoid. Now, if

h(a1, . . . , an+1) =
n+1⋃

i=1

f(ai−1
1 , an+1

i+1 ),

then the (n + 1)-ary hypergroupoid (H,h) is an (n + 1)-ary Hv-group, but it
is not an (n+ 1)-ary hypergroup. For instance,

h(a1, . . . , a1
︸ ︷︷ ︸

n

, h(a1, . . . , a1
︸ ︷︷ ︸

n

, a2))

= h(a1, . . . , a1
︸ ︷︷ ︸

n

, {an, an−1})

= h(a1, . . . , a1
︸ ︷︷ ︸

n+1

) ∪ h(an−1, . . . , an−1
︸ ︷︷ ︸

n+1

) ∪ h(an, . . . , an
︸ ︷︷ ︸

n+1

) = {a1, a2, an},

h(a1, . . . , a1
︸ ︷︷ ︸

n−1

, h(a1, . . . , a1
︸ ︷︷ ︸

n+1

), a2)

= h(a1, . . . , a1
︸ ︷︷ ︸

n−1

, {an}, a2)

= f(a1, . . . , a1
︸ ︷︷ ︸

n+1

) ∪ f(an, . . . , an
︸ ︷︷ ︸

n+1

) ∪ f(a2, . . . , a2
︸ ︷︷ ︸

n+1

) = {a1, an−1, an}.

Let ρ be a binary relation on a non-empty set H . For any a ∈ H , we denote
fρ(a, . . . , a

︸ ︷︷ ︸

n

) = {y | (a, y) ∈ ρ}, and for any a1, . . . , an ∈ H,

fρ(a1, a2, . . . , an) = fρ(a1, . . . , a1
︸ ︷︷ ︸

n

) ∪ fρ(a2, . . . , a2
︸ ︷︷ ︸

n

) ∪ · · · ∪ fρ(an, . . . , an
︸ ︷︷ ︸

n

).

Definition 3.5. Let ρ be a binary relation on a setH . We define the (n+1)-ary
hyperoperation Fρ as follows:

Fρ(x1, . . . , xn+1) =
n+1⋃

i=1

fρ(xi, . . . , xi
︸ ︷︷ ︸

n

) =
n+1⋃

i=1

Uxi
,
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when Uxi
= fρ(xi, . . . , xi

︸ ︷︷ ︸

n

).

Theorem 3.6. Let ρ be a binary relation on a set H, with full domain and

full range. Let Fρ be the (n + 1)-ary hyperoperation in Definition 3.5. Then,

(H,Fρ) is an (n+ 1)-ary Hv-group.

Proof. Since D(ρ) = H and (H, fρ) is an n-ary hypergroupoid, (H,Fρ) is an
(n+ 1)-ary hypergroupoid. Let x1, . . . , xn ∈ H . Then,

UH = fρ(H, . . . ,H
︸ ︷︷ ︸

n

) = {y ∈ H |(H, y) ∈ ρ} = {y ∈ H |∃x ∈ H, (x, y) ∈ ρ}

= D(ρ) = H.

So, for x1, . . . , xn ∈ H we have

Fρ(H,x2, . . . , xn+1) = UH ∪
n+1⋃

i=2

Uxi
= H.

By the similar way, we have Fρ(x1, H, x3, . . . , xn+1) = · · · = Fρ(x1, . . . , xn, H)

= H. Now, we prove that Fρ is weakly associative. If x2n+1
1 ∈ H , then,

(i1)

Fρ(Fρ(x
n+1
1 ), xn+2, . . . , x2n+1) = Fρ(Ux1

∪ · · · ∪ Uxn+1
, xn+2, . . . , x2n+1)

=
⋃

g∈Ux1
∪···∪Uxn+1

Fρ(g, xn+2, . . . , x2n+1)

⊇
⋃

g∈Uxn+1

Fρ(g, xn+2, . . . , x2n+1)

= Fρ(Uxn+1
, xn+2, . . . , x2n+1)

⊇
⋃

g∈Uxn+1

Ug,

(i2)

Fρ(x1,Fρ(x
n+2
2 ), xn+3, . . . , x2n+1) = Fρ(x1, Ux2

∪ · · · ∪ Uxn+2
, xn+3, . . . , x2n+1)

=
⋃

g∈Ux2
∪···∪Uxn+2

Fρ(x1, g, xn+3, . . . , x2n+1)

⊇
⋃

g∈Uxn+1

Fρ(x1, g, xn+3, . . . , x2n+1)

= Fρ(x1, Uxn+1
, xn+3, . . . , x2n+1)

⊇
⋃

g∈Uxn+1

Ug,

...
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(in+1)

Fρ(x1, . . . , xn,Fρ(x
2n+1
n+1 )) = Fρ(x1, . . . , xn, Uxn+1

∪ · · · ∪ Ux2n+1
)

=
⋃

g∈Uxn+1
∪···∪Ux2n+1

Fρ(x1, . . . , xn, g)

⊇
⋃

g∈Uxn+1

Fρ(x1, . . . , xn, g)

= Fρ(x1, . . . , xn, Uxn+1
)

⊇
⋃

g∈Uxn+1

Ug.

It follows that (H,Fρ) is an (n+ 1)-ary Hv-group. �

Example 10. Let H = {1, . . . , n}, n ≥ 4 and ρ = {(1, n), . . . , (i, n − i +
1), . . . , (n, 1)} be a binary relation on a set H , with full domain and full range.
Then,

U1 = fρ(1, . . . , 1
︸ ︷︷ ︸

n

) = {n}, U2 = fρ(2, . . . , 2
︸ ︷︷ ︸

n

) = {n− 1}, . . . ,

Un−1 = fρ(n− 1, . . . , n− 1
︸ ︷︷ ︸

n

) = {2}, Un = fρ(n, . . . , n
︸ ︷︷ ︸

n

) = {1}.

The properties of (H, fρ), where fρ(x1, . . . , xn) =
⋃n

i=1 Uxi
, as n-ary Hv-group,

whit rarely computations guarantee that the (H,Fρ) is an (n+1)-aryHv-group
properties. But (H,Fρ) is not an (n+ 1)-ary hypergroup.

For instance

Fρ(1, . . . , 1
︸ ︷︷ ︸

n

,Fρ(1, . . . , 1
︸ ︷︷ ︸

n

, 2)) = Fρ(1, . . . , 1
︸ ︷︷ ︸

n

, U1 ∪ U2)

= Fρ(1, . . . , 1
︸ ︷︷ ︸

n

, {n, n− 1})

= U1 ∪ Un−1 ∪ Un = {1, 2, n},

Fρ(1, . . . , 1
︸ ︷︷ ︸

n−1

,Fρ(1, . . . , 1
︸ ︷︷ ︸

n+1

), 2) = Fρ(1, . . . , 1
︸ ︷︷ ︸

n−1

, U1, 2)

= Fρ(1, . . . , 1
︸ ︷︷ ︸

n−1

, {n}, 2)

= U1 ∪ U2 ∪ Un = {1, n− 1, n}.
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