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n-ARY HYPERGROUPS ASSOCIATED
WITH n-ARY RELATIONS

SEID MOHAMMAD ANVARIYEH AND SOMAYYEH MOMENI

ABSTRACT. The notion of n-ary algebraic hyperstructures is a general-
ization of ordinary algebraic hyperstructures. In this paper, we associate
an n-ary hypergroupoid (H, f) with an (n + 1)-ary relation p,+1 defined
on a non-empty set H. Then, we obtain some basic results in this re-
spect. In particular, we investigate when it is an n-ary H,-group, an
n-ary hypergroup or a join n-ary space.

1. Introduction and basic definitions

Algebraic hyperstructures represent a natural extension of classical alge-
braic structures and they were introduced by Marty [14]. The connections
between hyperstructures and binary relations have been analyzed by many re-
searchers, such as Corsini [1], Corsini and Leoreanu [2], De Salvo and Lo Faro
[7, 8], Leoreanu and Leoreanu [13], Rosenberg [16], Rasouli and Davvaz [15],
Spartalis [17], Spartalis and Mamaloukas [18] and so on. n-ary generalizations
of algebraic structures is the most natural way for further development and
deeper understanding of their fundamental properties. In [6], Davvaz and Vou-
giouklis introduced the concept of m-ary hypergroups as a generalization of
hypergroups in the sense of Marty. Also, we can consider n-ary hypergroups
as a nice generalization of n-ary groups. In [11], Leoreanu-Fotea and Davvaz
introduced and studied the notion of a partial n-ary hypergroupoid associated
with a binary relation. Some important results concerning Rosenberg partial
hypergroupoids, induced by relations, are generalized to the case of n-ary hy-
pergroupoids. Then, n-ary hypergroups associated with union, intersection,
products of relations and also mutually associative n-ary hypergroupoids are
analyzed. Also, in [5], they investigated binary relations on ternary semihyper-
groups and studied some basic properties of binary relations on them. Davvaz
and et al. in [4] considered a class of algebraic hypersystems which represent
a generalization of semigroups, semihypergroups and n-ary semigroups. In
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[12], Leoreanu-Fotea and Davvaz studied the rough sets within the context of
the commutative n-ary hypergroups. In [3], Cristea and Stefanescu extended
some results on the hypergroups connected with binary relations to the case
of n-ary relations. In particular, they established some connections between
hypergroupoids associated with n-ary relations and hypergroupoids associated
with binary or ternary relations.

Let H be a non-empty set and f a mapping f : H" — o*(H), where p*(H)
is the set of all non-empty subsets of H. Then, f is called an n-ary hyperop-
eration on H. We denoted by H™ the Cartesian product H x --- x H, where
H appears n times and an element of H™ will be denoted by (z1,...,z,),
such that x; € H for any ¢ with 1 < ¢ < n. In general, a mapping f :
H"™ — p*(H) is called an n-ary hyperoperation and n is called the arity
of hyperoperation. Let f be an m-ary hyperoperation on H and Ai,..., A,
be non-empty subsets of H. We define f(A1,...,4,) = U{f(x1,...,2n)|2; €
A;,i = 1,...,n}. We shall use the following abbreviated notation: the se-
quence T;, Tit1,-..,x; will be denoted by zf Also, for every a € H, we write
fla,...;a) = f((g)) and for j < i, zf is the empty set. In this conven-

——

n
tion f(1,.. ., %4, Yit1s- - Yj, Tj+1,- - - » Tn) Will be written f(xzi,yirl,x;}_,_l). A
non-empty set H with an n-ary hyperoperation f : H" — *(H) will be
called an n-ary hypergroupoid and will be denote by (H, f). An n-ary hy-
pergroupoid (H, f) is commutative if for all o € S,, and for every a} € H,
we have f(ay) = f(azg?))) An n-ary hypergroupoid (H, f) is called an n-ary
semihypergroup if for any i,j € {1,2,...,n} and a?"~! € H, we have
f(ai_l,f(a?“_l),ai’zl) = f(a{_l,f(a?“_l),ai’zl) (associative law).

An n-ary hypergroupoid (H, f), in which the equation b € f(a}™"!, z;, ai, )
has a solution z; € H for every ay,...,0;—1,0;11,--.,0an,b € H and 1 <1i <mn,
is called a quasi n-ary hypergroup. A quasi n-ary hypergroup (H, f) with the
associative law is called an n-ary hypergroup. An n-ary hypergroupoid (H, f)
is called an n-ary H,-semigroup if the following week associative axiom holds:

2n—1

N Fa @), #0

for any x1,22,...,22,—1 € H. An n-ary H,-semigroup (H, f) in which is a
quasi n-ary hypergroup is called an n-ary H,-group. Note that the notion of
n-ary H,-group is a generalization of H,-group [20, 21].

2. n-ary relations

In this section, we present some basic results about the n-ary relations.
Suppose that H is a non-empty set and p C H" is an n-ary relation on H. We
recall the following definition from [3].
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Definition 2.1. The relation p is said to be

(1) reflexive, if for any « € H, the n-tuple (z,...,x) € p;

(2) n-transitive if it has the following property: if (z1,...25) € p, (y1,..-Yn)
€ p hold and if there exist natural numbers iy > jo such that 1 < ig < n,

1 < jo < m, iy = yj,, then the n-tuple (z4,..., 2, Yjprrs--->¥j.) € p, for
any natural number 1 < k < n and 41,...,%k, Jr+1,---,Jn such that 1 <11 <

<, <, 00 < Jrg1 < oo < Jn S

(3) symmetric if (21, z2,...,2,) € p implies (Xn, Tp_1,...,21) € p;

(4) strongly symmetric if (21, 22,...,2,) € p implies (Ty(1),. .., Tom)) €
for any permutation o of the set {1,...,n};

(5) n-ary preordering on H if it is reflexive and n-transitive;
(6) n-equivalence on H if it is reflexive, strongly symmetric and n-transitive.

Example 1. Let H = C (complex numbers) and (z1,...,2,) € p when |z1| =
|xa| = -+ = |x,|. Then, p is reflexive, strongly symmetric and n-transitive.

Example 2. Let H = N (natural numbers) and (z1,...,2,) € p when z; <
Tg < -+ < Ty,. It is easily to see that p is n-transitive but it is not reflexive
and strongly symmetric.

Definition 2.2. Let p be an n-ary relation on a set H. For any x € H and
any 1 € {1,...,n}and k € {1,...,n — (1 + 1)}, we define:

Li(x)={ye€e H|Jui,...,up—2 € H:(y,u1,...,U—1,,Uj,...,Up—2) EP
V(UL e ey Uy Yy ULy -+ oy Ui 15 Ty Uktiy - - - Un—2) € P},
and
Ri(x)= {y€ H|Ju,...,un—2 € H:(T,u1,...,Ui—1,Y, Ui -, Up_2) EP
V(UL e ey Uy Ty Uy« - oy Uiy Yy Wiy -« Un—2) € P}
Example 3. In Example 1, for any © € H and i € {2,...,n — 1}, we have
Li(@) = Ra(w) = {= €T |2] = |al}.
Example 4. In Example 2, for any © € H and i € {1,...,n}, we have
Li(z) ={y € Nly < z +1i},
Ri(z) = {y € Nly > = +i}.
Remark 1. Let p be an n-ary relation on a set H. Then, it is obvious that

(1) y € Ll(:c) if and only if x € R;(y) for any (z,y) € H? and any i

e{1,...,n}.
(2) L; (H) UzeH i(x) # H if and only if there exists y € H such that

Ri(y) =0,
(

(3) Ri(H) = Uyen Ri(x) # H if and only if there exists y € H such that
Lz(y) = (Z)a

(4) z ¢ L;(H) if and only if R;(x) = 0,

(5) = ¢ R;(H) if and only if L;(z) =0
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Indeed, U, Li(x) # H if there exists y € H such that y ¢ U,y Li(),
which is equivalent to the fact there exists y € H such that y ¢ L;(x) for any
x € H, equivalent to the fact that there exists y € H such that R;(y) = 0.

Definition 2.3. Let p be an n-ary relation on the non-empty set H. Set
m = [”T'H] We define on H the following n-ary hyperoperation:

f/)(xlv .- 'azn) = [j Lz(xz) U [j Ri(xnfz&rl)-

i=1 i=1
We notice that if (H, f,) is an n-ary hypergroupoid, then L;(z) # 0 or
Ri(z) # 0 for some z € H and i € {1,...,m}.

Theorem 2.4. Let p be an n-ary relation on the non-empty set H. The n-ary
hypergroupoid (H, f,) is a quasi n-ary hypergroup if and only if for any x € H
and any 1 <i <m, Li(x) # 0 and R;(x) # 0.

Proof. Let for any z € H and for any 1 < i < m, L;(z) # 0 and R;(z) # 0.
Then, L;(H) = H and R;(H) = H. So, for every z1,...,z, € H, we have

(H Lo, ... )
Ll(H> U LQ(SCQ) ‘U Lm(l'm) U Rl(:cn) J---u Rm(l'nferl) = H,
fp(-r Sy Tn)

Ll(l'l) U LQ( ) U Lm(acm) U Rl(l'n) Uu---u Rm(xn_m+1) =H,

fp(xlv H ZL'n)
($1) U L (@) URy () UR(H)U -+ - U Ry (@y—m+1) = H,
( y Tp—1, H)
:Ll(l'l) "'ULm(.Tm)URl(H)URg(wn_l)U-'-
) Rm—l(-rn—m-i-Q) U Rm(-rn—m-i-l) =H.
Thus, (H, f,) is reproductive, so it is a quasi n-ary hypergroup.
Conversely, suppose that (H, f,) is a quasi n-ary hypergroup and for some
i€{l,...,m}, there exists x € H such that L;(z) = () or R;(z) = 0.
If Li(z) = 0, then x ¢ R;(H). Also, it easy to see that for any j € {1,...,m},
x ¢ Lj(x) (also x ¢ R;(x)). Therefore,
x¢ Li(x)U---ULp(z)UR(x)U---UR;(H)U---UR,(x)
= fo(z,...,H,...,x) = H,
where H is in the i-place and this contradicts the reproducibility low. If R;(z)
= (), the similar argument implies a contradiction. ([
Example 5. Let H = {1,2,3,4} and
p: {(171""’1’2)7(3’17]‘""’173>’(273""’3’1)7
——— ——— ———

n—1 n—2 n—2

h

1
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(2,...,2,3),(3,4,...,4),(4,...,4,1)}.
N—— —— =
n—1 n—1 n—1

Now, for any x € H and 1 < i < m, we have

Ly Lo Ls . Lo, Ry Rs . R,
T {1,347 | {134} [ {134} | ... [ {134} [ {123} [ {123} ... | {1,2,3}
2| {12} | {12} | {12} [...| {12} | {237 | {23} | ... | {23}
31 {1.2F | {1.2F | {1.2F ... | {12y | {14y | {14y | ... | {14}
[ (3AY | (3AY | (3AY [ ... | {34y | {14y | {14y | ... | {14}

Li(H) = Li(1) U Li(2) U L;(3) U L;(4) = {1,2,3,4},

Rl(H) = Ri(l) URi(Q) URZ'(?)) UR1(4) = {1,2,3,4}.

Also,

fo(H,x2,...,2n)
= (Li(H) = |J Li(@) U La(x2) U+ U Ly () U Ry ()U

U Rm(wn—m-i—l)

= {1, 2,3,4} U L2($2) J---u Lm(xm) U R1($n) Uu...u Rm(xnferl) = H,
folz1, H, ..., zx)

= Li(z1) U (La(H) = | La(@)) U+ U Lin(wm) U Ry (2,)U

zeH
- U Rm(znferl)
= Li(z1)U{1,2,3,4} U U Ly (2m) U Ry () U+ U Ry (Tp—m41) = H,

folze,. .., H xy)
= Ly(21) U+ U Ly (2m) U Ry (2n) U (Re(H) = | ] Ra(2))U
U Rm(xn—m-i—l)
=Li(z1)U- - ULp(xm)URi(x,)U{1,2,3,4}U - U R (Tn—m+1) = H,
fp($1,...,1'n,1,H)
= Li(z1) U+ U Ly(zm) U (Ry(H) = | Ri(2)) U Ra(an_1)U
- U Rm(znferl)
=Li(z1) U ULp(zy)U{1,2,3,4} U Ra(Xp—1) U+ U Ry (Xp—m+1) = H.

Therefore, the n-ary hypergroupoid (H, f,) is a quasi n-ary hypergroup.
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Theorem 2.5. Let p be an n-ary relation on the non-empty set H. The n-ary
hypergroupoid (H, f,) is an n-ary H,-group if and only if, for any v € H and
i€{l,...,m}, Li(z) # 0 and R;(z) # 0.

Proof. If (H, f,) is an n-ary H,-group, then it is a quasi n-ary hypergroup and
by Theorem 2.4, it follows that for any z € H and i € {1,...,m}, L;(z) # 0
and R;(x) # 0.

Conversely, suppose that for any z € H and i € {1,...,m}, L;(z) # 0 and
R;(z) # 0. By Theorem 2.4, it follows that (H, f,) is a quasi n-ary hypergroup.
It remains to prove that the n-ary hyperoperation f, is weakly associative. For
this, we show that, for any x§"71 € H,

2n—1 . i
N Folat e a2 £,
We have
(i1)
fp(fp(‘rl; .. axn)axn-‘rla ey :EQn—l)
= {Ll(u) U L2($n+1) U---u Lm($n+m_1) U Rl(l'gn_l) U---u Rm(mgn_m) |
u€ Li(z1) U+ ULp(m) UR () U~ URp (Tn—m+1)}
D {Ll(u) | u e Ll(l'l) J---u Lm(l'm) U Rl(SCn) J---u Rm(l'nfmle)}
2 {Li(u) [ we Ri(zn)} ={Li(u)zn € L1(u)} 3 2y,
(i2)
fp(-rla fp(:EQa .. axn-‘rl)a LTn42y .- axQn—l)
= {Ll(l'l) U Lg(’u) U...U Lm($n+m_1) U Rl(mgn_l) J---u Rm(l'gn_m) |
(TS L1($2) J---u Lm($m+1) U R1($n+1) J---uJ Rm(-rn—m-i-Q)}
) {Ll(u) | u e Ll(:CQ) J---u Lm($m+1) U Rl(l‘nJrl) J---u Rm(xn,erg)}
2 {La(u) [ u € Ra(xn)} = {La(u)|xn € La(u)} 3 @n,

(infl)
folzr, .. xn_2, fol@Zn_1,...,T2n—2), Ton—1)
={Li(z1) U - ULy (zm)URi(x2n—1) URo(u) U - URpm(Tpn_m+1) |
w€ Li(xp—1) U ULp(Tnim—2) UR1(zan—2) U URp(an—m—-1)}
D {Ra(u) | u € L1(xn-1)U- - U Lp(pntm—2) U R1(z2p_2)U
U Rm(SCanmfl)}
2 {Ra(u) [ u € La(wn)} = {Ra(u)|zn € Ra(u)} 5 an,
(in)

fp(zla s Tp—1, fp(xnv s 73527171))
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= {Ll(l'l) J---u Lm(l'm) U Rl(u) U RQ(znfl) U---u Rm(l‘nferl) |

u e Ll(l‘n) Uy---u Lm(l‘n+m_1) UR,y (wgn_l) Uu---u Rm(wgn_m)}
) {Rl(u) | (TS Ll(acn) Uy---u Lm($n+m_1) U Rl(l‘gn_l) Uu---u Rm(l‘gn_m)}
D {Ri(u) | u € Li(xpn)} = {R1(u)|xn € R1(u)} 2 zp.

It follows that (H, f,) is an n-ary H,-group. O
Example 6. Let H = {1,2,3} and p = {(1,...,1,2,1),(2,3,...,3),(2,...,2)}
N—— —_—— =
n—2 n—1 n
be an n-ary relation on H. Now, we have:
Ly Lo Ls oo | Ly Ry Ry .| R
TRy | (0 [ 0 |- [ () | (L3 (Lo |- (L2
2 [{1L,2) [ 1L2F [ (L2F | [AL2y [(L2.3) [{2.3Y [ {28
@ e e e B O 3
Also,
fo(fo(, ..., 1),1,...,1) = fo({1,2},1,...,1) = {1,2},
—— —
n n—1
Folly o L (1, 1) = £,(1,...,1,{1,2}) = {1,2,3}
N—— N—— S~——
n—1 n n—1
This example shows that for every x € H and for any ¢ € {1,...,m},

Li(z) # 0, Ri(xz) # 0 and (H, f,) is an n-ary H,-group but it is not an n-ary
hypergroup.

Corollary 2.6. Let p be an n-ary relation on a set H. The n-ary hypergroupoid
(H, fp) is an n-ary H,-group if and only if it is a quasi n-ary hypergroup.

Lemma 2.7. Let p be an n-ary preordering on a set H. Then, for any a,x,u €
H and i € {1,...,n — 1}, such that a € L;(u) [a € R;(u)] and v € L;(x)
[u € Ri(z)], it follows that a € L;(z) [a € R;(z)].

Proof. Let a,z,u € H such that a € L;(u) and u € L;(x). Then, there exist
a1y...,ap—2,b1,...,bp_o € H such that (a,a1,...,a;-1,u,a;,...,an_2) € p or
(@1, ey Oy Oy Q1 e - oy Qi1 Uy Qg+ - -, Gp—2) € p forany k € {1,...,n—i—
1}. Also, we have (u,by,...,b;—1,2,b;,...,bp—2) € por (by,...,bp,u,bpt1,. ..,
bhti—1,T, bpti...,bp_2) € p for any h € {1,...,n —i — 1}. In the all of
the situations, by n-transitivity, we have a € L;(x). In the similar way from
a € R;(u) and u € R;(x) implies a € R;(z). O
Definition 2.8 ([11]). Let (H, f,) be a commutative n-ary hypergroup. For
a,bi,...,bp_1 € H, we denote a/by ™' = {2 | a € f,(x,b1,...,bp_1)}. We say
that the commutative n-ary hypergroup (H, f,) is a join n-ary space, if for any

a,c,b1,ba,...,bph_1,d1,do,...,d,—1 € H, the following implication holds:
a/by  Ne/diTt #0 = fo(a,diy ... dn1) 0 folbr, ..o byot,c) # 0.
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Example 7. Let p = {(z,z,...,z)|z € H} be the diagonal n-ary relation on a
set H. Then, (H, f,) is a join n-ary space. In fact, for any ¢ € {1,...,m} and
x € H, we obtain L;(x) = R;(z) = {z} and thus, for any 27" € H, it follows that
fol@1, o 20) = fol@o), s Tom)) = {T1,...,2,}. Also, for any =t € H,
fo(H,x2,...,xn) = fo(x1,H,x3,...,2n) = ... = fp(x1,...,2p—1,H) = H.
Moreover, for any z1" "' € H,

(i) folfolzr, . xn), Ty, o, Tan—1)

= fol{z1, .. b Tpg, o Ton—1) = {T1, . Ty Tngt, - Ton—1 )y
(12)  folz1, folma, . s Tnt1), Tng2, ..o, Tan—1)

= folzr,{z2.. ., Tns1} Tng2, - Ton—1) = {Z1,. . ., Tny Tng1, .-, T2n—1},
(in)  fo(z1,, @n—1, fo(Tn,. .., T2n—1))

= folx1, .., Zn—1,{Tns . s Ton—1}) = {@1, .. T Tpg1s o Tono1 )

So, (H, f,) is a commutative n-ary hypergroup. It remains to prove that, for
any a,c,b1,ba,...,bp_1,d1,ds,...,dp—1 € H,
a/bi ™ Ne/diTN £ 0= folasd, ... dn—1) O folbry .. bpo1,c) # 0.
We obtain that
aja,by,... by_o
={x e Hla€ fy(x,a,b1,...,bp_2)}
={z € H|a € Li(x) U La(a) U L3(b1) U+ U Ly, (bym—2) U Ry (bp—2)U
U Ra(bnem1)}
=H,
a/by,a,ba, ..., by_o
={z € Hla€ fo(z,b1,a,ba,...,bn_2)}
={z € H|a € Li(x) U La(b1) U Lg(a) U Ly(ba) U-+-U Ly (br—2) U Ry (by—2)U
U R (bpm—1)}
= H,

a/bl,bg,...,bn_g,a
={zx e Hla€ fy(x,b1,...,bp_2,a)}
= {ZL' € H|a € Ll(l') U Lg(bl) U...u Lm(bmfl) U Rl(a) U---u Rm(bnfm)}
= H.

Ifa;ébl,...,bn_l, then a/bl,...,bn_l = {ZCEH | a € fp(x,bl,...,bn_l)}
={zx € H|ae€{zb,....,bn_1}} = {a}. Let a,¢,b1,ba,...,bp_1,d1,da,...,
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dooy1 € H, a/by ' nc/dy™ # (. If there exist i,j € {1,2,...,n — 1} such
that a = b; or ¢ = dj, then a € fy(a,dy,...,dp—1) 0 fo(b1,...,bp_1,¢) oOr
a € fola,di,....dn-1) 0O fp(b1,...,bp—1,¢). If @ # by,...,b,—1 and ¢ #
di,...,dn—1, then fy(a,di,...,dy—1) N fo(b1,...,bp_1,¢) # 0 if and only if
a = c and thus a € f,(a,di,....dn-1) N fp(b1,...,bp—1,¢). In both cases
fola,di, ... dn—1)Nfp(b1,. .., bn_1,¢)#D. Therefore, n-ary hypergroup (H, f,)
is a join m-ary space.

Theorem 2.9. If p is an n-ary preordering on a set H such that L;(z) = R;(x)
for any x € H and 1 <1i,j < m, then (H, f,) is a join n-ary space.

Proof. Set Li(x) = Rj(x) = L(z). Since p is reflexive, it follows by Theorem
2.4, that (H, f,) is a quasi n-ary hypergroup. Moreover, since L;(x) = R;(x)
for any z € H and 1 < 4,5 < m, it follows that
fo(xi,..oyzn) =Li(x1) U ULy (2m) UR () U+ - U Ry (Tr—m1)
=L(x) U UL(@m) U L(Zme1) U--- U L(xy,)
= J L(x:)
i=1

and this implies that f,(21,...,2n) = fo(Toq), -, To(m)) for any 27 € H and
for any permutation o € {1,...,n}. Therefore, (H, f,) is commutative. Now,

we prove that the n-ary hyperoperation f, is associative, that means for any
i,j€{1,2,...,n} and 3"~ € H, we have

folai™ fp(ai ™71, 035 = fola] ™, fplaf ™), a5 ).
For any a € f,(fpo(z1,...,%n), Tnt1,...,T2n—1), there exists

u€ Li(x1)U-ULp(zm) UR () U U R (Tn—mt1)

=L(z1)U-+-UL(xp) UL(@y) U+ U L(Tp—mt1)s
such that a € L(u) U L(xp41) U+ U L(Zppm—1) U L(x2p-1) U -+ U L(Z2p—m)-
Moreover,
(%)
fp(-rla fp(:EQa .. axn-‘rl)axn-‘rQa o axQn—l)
={L(z1)UL(w)UL(xpt2)U...UL(x2p-1) | v € L(x2) U...U L(zpnt1)}-
We distinguish the following cases:
(i1) If a € L(u) and v € L(x1), by Lemma 2.7, a € L(x1). Therefore, we

have a € fy(z1, folx2, .. s Tng1)s Tnt2, .-, Tan—1).
(i2) If @ € L(u) and v € L(xz), then by (%), a € fy(x1, folza,. .., Tnt1),
Tn42;- .- ax2n—1)-

(in) If a € L(u) and u € L(z,,), then a € f,(x1, fo(z2,..., Tnt1), Tnyo, - -,
£E2n—1)-
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(tnt1) If @ € La(xpt1) = L(xpy1), then there exist by,...,b,—2 € H such
that (a, b1, Znt1,02,...,0n—2) € por (b1,..., bk, a,brt1, Tni1, bita,- -
bp—2) € p for any k € {1,2,...,n — 3}. For example, if (a,b1, Zpnt1, b2,

.,bn_g) c p, then by € R1($n+1) = L(.Tn+1), SO Tp41 € R(bg) =
L(bs). a € L(xpy1) and 11 € L(b2), by Lemma 2.7, a € L(by). a €
L(b2) and by € L(xp41) from (x) implies a € fo(x1, fo(z2, ..., Tnt1),

Tn+2;- .- ax2n—1)-
(int2) If @ € L(xp42), then by (%), we have a € f,(x1, fo(x2,..., Tnt1), T2,
'axQn—l)-

(t2n—1) If @ € L(z2p—1), then by (%) we have a € fy(z1, fo(z2,... , Tnt1),

Tpi2,.. . Tan-1).
The proofs of the other inclusions are similar and with long computations. It
remains to check the condition of the join n-ary space. Set a,by,...,b,_1,¢,d1,

.,dn—1 € H such that a/b} ' Nc/dy ™" # 0. Then, there exists x € a/b} "' N
c¢/d?1. Hence,
z€alby ™t =ac f,(x,b1,...,bp1) = L(x) UL(by)U---UL(b,_1),
z€c/di™ = ce fy(v,di,...,dy—1) = L(x) UL(d1)U---UL(dy_1).
Now, we consider the following situations:
1a€ L(z),c € Lx) = z € L(a ),z L(c) = z € [L(a) U L(dy) U
U L(dp-1)] N [L(b1) U --- U L(bp—1) U L(c)] = fola,di,...,dn—1)N
fp(bl, ey bn—la C).
2Ifa e L(z)and ¢ € L(d;), ¢ € {1,...,n —1}. Since ¢ € L(c) (by
reflexivity), it follows that
c€[L(a)UL(dy)U...UL(dp—1)]N[L(b1) U...UL(bp—1) U L(c)].
3Ifaec L(b)and c € L(x), i € {1,...,n — 1}, then b; € R(a) = L(a).
Since b; € L(b;) (by reflexivity), it follows that
b; € [L(a)UL(d1) U...UL(dp—1)]N[L(b1) U...UL(bp—1) U L(c)].
4 Ifa e L(b;) and c € L(d;),,j € {1,...,n—1}, then b; € R(a)
since b; € L(b;) (by reflexivity), it follows that
bi € [L(a) U L(d1)U...UL(dp—1)] N [L(b1) U...U L(bp_1) U L(c)].

Since for a,by,...,bp_1,¢,dy,...,dy_1 € H such that a/b7 ' Ne/dP™ # 0,
we have f,(a,di,...,dn—1)N fo(b1,...,bu_1,¢) # 0, so (H, f,) is a join n-ary
space. [l

L(a)a

Remark 2. Let p be an n-ary reflexive relation on a set H. By Lemma 2.7, if
p is n-transitive, then p satisfies the following property:

(T)

for any a,z,u € H and i€{1,...,n — 1} such that a€ L;(u) [a € R;(u)]
and ue L;(z) [u€ R;(x)], it follows that a € L;(x) [a€ R;(z)].
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Theorem 2.10. Let p be an n-ary relation on H such that x € L;i(x) = R;(x)
for any x € H and 1 < i,j < m. If p satisfies the properties (T), then f, is
assoctative and so (H, f,) is a join n-ary spaces.

Proof. The reproducibility follows from Theorem 2.4. Suppose that f, is not
associative. Then, there exists z7"~ ' such that Fo(fo(@i, oy 2n), Tng1, - - -
Zan—1) is not equal to

fo(z1, fp(®2, s Tng1), Tnta, ..., T2n—1) OF
fp(:r17$27fp(z3a o azn+2)7$n+37 s 7$2n71) ...0r
fp(-rh vy Tn—1, fp(-rnv <. ';$2n—1))-

Suppose that there exists u € f,(fo(21,...,2n), Tnt1, ..., Tan—1) such that

u ¢ fp(l'l, fp(SCQ, . 7$n+1); Tp+42 - ,Z'anl)
or vice versa. We consider the first situation: it follows that there exists
t € fo(x1,...,2,) such that u € L(t) U L(zp41) U --- U L(z2,—1) and for any
s € fo(xo,. . Tpy1), u & L(x1) UL(s) U L(xpq2) U--- U L(x2n-1). Now, we
distinguish the following situation:
(1) fu e L(t) and t € L(x1), then u € L(z1), so u € L(x1)U- - -UL(z2p—1).
(2) Ifu e L(t) and t € L(x2), then u € L(x2). Since 2 € fy(x2,...,Tnt1).
Thus, u € L(z1) U L(x2) U L(@p42) U+ - U L(z2-1).

(n) fu € L(t)and t € L(zy), thenu € L(zy). Since z,, € fo(T2,...,Tnt1),
u€ L(x1) U L(zy) U L(xpg2) U+ U L(xop—1).
(n+1) If v € L(xpt1), then v € L(x1) U L(xpy1) U -+ U L(z2p-1), since

Tn+1 € fP(‘TQa cee 7'1;71-‘1-1))
(n+2) If u € L(zpy2), then u € L(x1) U L(s) U L(Zp12) U - U L(z2p—1).

(2n—1) If u € L(zap—1), then u € L(z1) U L(s) U L(xp42) U -+ - U L(z2,-1)-
For the all cases, we obtain a contradiction with the fact
u € L(x1)UL(s) UL(zp2) U+ UL(x2p-1)
for any s € f,(x2,...,2n41). The proofs of the other inclusions are similar.
Therefore, f, is associative. O
Example 8. Let H = {0,1,2} and
p=1{00,...,0),(1,2,...,1,2),(2,1,...,2,1),(1,...,1,2),(2,...,2,1).
——
n n—1 n—1
Then, we have
Ly Lo Ls |...| Ln Ry Ry .| Rm
0| {oy | {oy | {o} |...| {0} | {o} | {o} |...| {0}
{1,2} | {1,2} [ {1,2} |... [{1,2} [{1,2} [{1.2} | ... | {1,2}
2 [ 112} {120 [ 11,2} | L2} [{L2h [ {12} .. [{L2)

[u—y
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for every x € H and 1 <1i,j <m, we have L;(z) = R;(z). So,

{0} if {z1,...,2z,} = {0},
fo(zi,...,zn) =< {1,2} if {x1,...,2,} C{1,2},
{0,1,2} otherwise.

It is not difficult to see that (H, f,) is a join n-ary space.

3. n-ary H,-groups associated with n-ary relations

Given an n-ary hypergroupoid (H, f), we may consider the (n + 1)-ary rela-
tion px on H associated with the n-ary hyperoperation f as follows

(T15-- o Tnt1) € pp & T € f(iﬂlf*laiﬂzjfll)-

This is the most natural way to define an (n + 1)-ary relation associated with
an n-ary hyperoperation. If (H, f) is an n-ary hypergroup, then pj satisfies
the following conditions:

(1) For all x1,...,z, € H, there exists at least one element x € H such
that (V71 2, 2}) € py.

(2) If, for x1,...,xont1,2 € H, there exists x € H such that for any k <4

and k < j, we have (:C’f_l, z, :I:}C_l, x, xi’fﬁl) € pi and (‘ZE;-HC_Q, T, xiiZ:ll)

€ Pk, then there Qxists y € H such that (m’ffl,z,xfc_l,y,xmgl) € pr
and (x;Jrk*Q,:c,:c;IZ:ll) € pi, and conversely.

(3) If, for x1,...,Zon+1,2 € H, there exists € H such that for any k < ¢

and k > j, we have (z’f_l, 2, z};l, x, xi’_’ﬁl) € pr and (z;+k_2, x, xiizzll)

. i—1 +k—2 2n—1

€ Pk, thenfllcle;e ex1sis yle H such that (2 Y Tpii 25T 1) €

_ e

pr and (:c§ ,x,x;+k_1

(4) If, for z1,...,22n41,2 € H, there exists x € H such that for any

. . i—1 k—2 2n—1
k > i and k > j, we have (z} ,y,xflii 2,2, 1) € pr and

(ziF=2 g i1y ¢ pp. then there exists y € H such that (277 ',y,

) € pr, and conversely.

[ i+k—1
n+k—2 2n—1 Jjt+k—2 Jjt+n—1
Tyt ,z,$n+k71) € pi and (xj ,x,xj+k71) € pi, and conversely.

(5) Forallz} € H and 1 < i < n, there exists z € H such that (z™!, x, 27)
€ Pk
Conversely, if p is an (n+ 1)-ary relation on a set H such that the conditions
(1)-(5) are satisfied, then we take the n-ary hyperoperation

fe(xi,. .. xp) ={z€ H| (a5 2,27) € p}.
Hence, (H, fi) is an n-ary hypergroup. Let o,, be an n-ary relation on a set
H. We associate an (n + 1)-ary relation denoted by 0,41 € H"*! as follows:

(1) (X1, oy Tpt1) €E Opy1 = V1 <i<n+1, (xi_l,x?:f) € oy,

Proposition 3.1. The unique (n+1)-ary relation o,,41 obtained from an n-ary
relation o, using the method (1) and such that

(2) (072t e HY, 3z, € H: (21,...,Tn41) € Ont1
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is the total relation opy1 = H X -+ X H.
S —
n+1

Proof. The condition (2) is equivalent to the following one: for any (z1,...,zy)
€ H", (x1,...,%,) Eop, so the n-ary relation o, is the total relation H x---x H.
—_—

Thus, for any (z1,...,2,+1) € H"" and for any 1

i < n+ 1, we have
(zt™ 1 aPt!) € H" = o,,. Therefore, by using the method (1), (z1,...,Zn41) €

Onal- So H"*! C 0,41. Therefore, 0,41 = H™1. O

<
d

Moreover, the n-ary hypergroupoid obtained from o, taking
Pt = {as € H|(21,... @0 41) € i1}

is the total n-ary hypergroup on H. Conversely, with any (n + 1)-ary relation
pn+1 On H, we associate an n-ary relation p, C H™ as follows:

(3) (le 15 7:11)€Pn<:>3$z€H (1,0, Tng1) € Prt1-

Let (H, f) be an arbitrary n-ary hypergroupoid which determines the (n + 1)-
ary relation p,4+1 defined by

(1, s Tnt1) € Pppt1 & T € f(x) i 1,x?_:r11) for some 1 <4 < n.

Proposition 3.2. The unique n-ary relation p, obtained from an (n+ 1)-ary
relation pp4+1 using the method (3) and such that

(T15- s Tpg1) € ppi1 & T € f(fﬁzflax?fll)a

is the total relation p, = H x --- x H.
(S —

n

Proof. Since (H, f) is an n-ary hypergroupoid, it follows that, for any (27!,

o) € H™, there exists x; € H such that 2; € f(xi™ ', 2™, that is

i+1 » i+l

(T1,.--,Tnt1) € pns1. Therefore, for any (z}',2]') € H", we obtain

(237" aPh!) € pn, that is p, = H x -+ x H. O
%,_/

n

Definition 3.3. Let (H, f) be an n-ary hypergroup, such that the n-ary hy-
peroperation f is constructed by the (n + 1)-ary relation p, which satisfy the
conditions (1)-(3). We define an (n + 1)-ary hyperoperation:

n+1
h(z1,. .. Tng1) = Uf( “Lalt!) for all zy,..., 2041 € H.

Theorem 3.4. Let h be the (n+1)-ary hyperoperation in Definition 3.3. Then,
(H,h) is an (n+ 1)-ary H,-group.
Proof. Since (H, f) is an n-ary hypergroup, (H,h) is an (n + 1)-ary hyper-
groupoid. Let x1,...,2,41 € H. Then, producibility of (H, f) implies that
(i1)
h(H, Ly ny .TnJrl)
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= flxa, ..., xpt1) U f(H,23,...,Tpn41) U... U f(H,z2,...,2,) = H,
(i2)

h(z1,H,x3,...,Tny1)
= f(H,z3,...,2n41) U f(21,23,.. ., Zpy1) U.. .U f(z1, H,...,z,) = H,

(in-i-l)
h(xlv‘rQﬂ"'ﬂzan)
:f(.’L'Q,(Eg,...,fEn,H)Uf(.’L'l,.’LB,...,(En,H)U.-.Uf(.’lz'l,-.-,fﬂn):H-

Thus, (H, h) is productive. Now, we prove that h is weakly associative. Suppose
that 7" € H. Then,

(i1)

n+1
h(h(@P ), Zng2, - wong) = R F@T 2, 2ng2, - 22041)
=1

= h(g,Tnt2,- - Tont1)

2 f(9: Tnt3y- -5 T2nt1)

D f(f(x2y. s Tnt1), Tngsy - s Lant1)s

(i2)
n+1
(w1, h(@s ), Tngs, o woni1) = hizy, | F@h, 25), 2ngs, . 22n41)
1=1
= h(x1,9, Tnt3, -, Tant1)
2 f(g,Tn+3s- -5 Tant1)
D f(f(z2y . s Tnt1), Tngsy -« s Lant1)s
(inJrl)
n+1
h(@1, . T, W@y, Dang)) = hi@, .oz, | Fant 2205 )
=1
= h(x1,...Tn,9)
D f(za, -y xn, g)
D flxay ooy @ny [(Tng1s Tty - ooy Tang1))-
Therefore,

Wl +im1y  2n+1
N Ay k(@70 2,057) # 0.

=1
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This implies that (n 4 1)-ary hypergroupoid (H, k) is weakly associative. [
Example 9. Let H = {a1,...,a,} and f be an n-ary relation on H such that
flay,...;a1) ={an}, f(az,...,a2) = {an—1}
— —

n n

f(a’nfla s aanfl) = {0’2}7 f(a’na ctt an) = {a’l}
—_— —— —_———
flar,...;an) = flar,...,a1)U---U f(an,...,an).
— —
Then, (H, f) is an n-ary hypergroupoid. Now, if

el i—1 n+1
h(a1,---,an+1)= _U1 f(az1 ’a?Jrl)a
i—

then the (n + 1)-ary hypergroupoid (H,h) is an (n + 1)-ary H,-group, but it
is not an (n + 1)-ary hypergroup. For instance,

h(al,...,al,h(al,...,al,ag))
—— Y
n n
= h(ala .. '7a17{a’n7an71})
——
n
= h(a1,...,a1)Uh(an-1,...,an-1) Uh(an,...,a,) = {a1,az2,a,},
——— —_—— — ———
n+1 n+1 n+1
h(al,...,al,h(al,...,al),ag)
—— Y
n—1 n+1
= h(ala"'7ala{an}7a2)
———
n—1
= f(a1,...,a1) U f(an,...,an)U f(ag,...,a2) = {a1,an—1,an}.
—— ———— ——
n+1 n+1 n+1
Let p be a binary relation on a non-empty set H. For any a € H, we denote
fola,...,a) ={y | (a,y) € p}, and for any ai,...,a, € H,
——
n
folar,az, ... an) = folar,...,a1) U folaz,...,a2) U---U frlan,... an).
—— —— ———
n n n

Definition 3.5. Let p be a binary relation on a set H. We define the (n+1)-ary
hyperoperation IF, as follows:

n+1 n+1
Fp(xlv"'azn+1): U fp(zi7---;1'i): U UCE-;?
i=1 — i=1

n
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when Uz, = fo(2s, ..., xi).
——
Theorem 3.6. Let p be a binary relation on a set H, with full domain and
full range. Let F, be the (n + 1)-ary hyperoperation in Definition 3.5. Then,
(H,F,) is an (n+ 1)-ary H,-group.
Proof. Since D(p) = H and (H, f,) is an n-ary hypergroupoid, (H,F,) is an
(n + 1)-ary hypergroupoid. Let x1,...,2, € H. Then,
Un = fo(H,...,H)={y € H|(H,y) € p} ={y € H3z € H,(z,y) € p}
———

n

=D(p) = H.
So, for z1,...,z, € H we have
n+1
Fo(H, 3, ..., 2n11) =Ug U | J U, = H.
i=2
By the similar way, we have F,(z1, H,z3,...,&n41) = - = Fp(z1,..., 20, H)

= H. Now, we prove that IF, is weakly associative. If :c?"Jrl € H, then,
(i1)
FP(FP(,T?JA), Tp42,--- ,$2n+1) = FP(UE51 Uy---u Uzn+1,$n+2, R ;$2n+1)

= U Fp(g,:cn+2,...,z2n+1)

g€Uz, LJ»»»LJUQCTLJrl

:—> U Fp(g,l'n+2,...,$2n+1)
9€Us

nt1
=F,(Usps1>Tny2,- - Tant1)
> U U
9€Uz,, 4y
(i2)
Fp(zl,Fp(ngrQ), Tpgsse s Tong1) = Fp(@1,Upy, U UUs, oy T3, -+, T2nt1)
= U Fo(z1,9, Tnts, - - Tant1)

g€Uz,U--UU,,,

> |J Fol@1,9 @13, 22041)
gGUInJrl
:Fp(xlvUzn+1ﬂzn+3a-'-7x2n+1)
> U v

9€Usz

n+1
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(inJrl)
2n+1

Fo(wy,. .. 20, Fo(z,117)) = Fol@r, ..oy 20, Ugp g U U Uy, )

— U Fy(z1,...,Zn,9)

g€V, U UUayp, 4y

2 U Fp(xla---axnag)

gEUIn+1

= Fp(xl, ey L, Umn,+1)
> U v
gEUgcn+1

It follows that (H,F,) is an (n + 1)-ary H,-group. O

Example 10. Let H = {1,...,n}, n > 4 and p = {(1,n),...,(i,n — i +
1),...,(n,1)} be a binary relation on a set H, with full domain and full range.
Then,

Uy = fo(1,.... 1) ={n}, Us=f(2,....2)={n—1},...,
—— ——

U1 =foln—1,....,n—1)={2}, U, = fo(n,...,n) = {1}.

n n

The properties of (H, f,), where f,(z1,...,2n) = Ui Us,, as n-ary H,-group,
whit rarely computations guarantee that the (H,F,) is an (n+1)-ary H,-group
properties. But (H,F,) is not an (n + 1)-ary hypergroup.

For instance

Fp(l,...,I,Fp(l,...,l,Q)):Fp(l,...,l,UlUUz)
N—— S—— ~——
=F,(1,...,1,{n,n—1})
———

=U,uU,_1UU, = {1,2,77,},
Fo(1,...,1,F,(1,...,1),2) =F,(1,...,1,U,2)
——
n—1 n+1 n—1
—F,(1,...,1,{n},2)
——

n—1

:U1UU2UUn:{1,n—1,n}.
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