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UNIQUENESS OF THE SOLUTION OF HALF INVERSE

PROBLEM FOR THE IMPULSIVE STURM LIOUVILLE

OPERATOR

A. Sinan Ozkan, Baki Keskin, and Yasar Cakmak

Abstract. The half-inverse spectral problem for an impulsive Sturm–
Liouville operator consists in reconstruction of this operator from its
spectrum and half of the potential. In this study, the spectrum of the im-
pulsive Sturm–Liouville problem is given and by using the Hochstadt and
Lieberman’s method we show that if q(x) is prescribed on

(

0, π

2

)

, then

only one spectrum is sufficient to determine q(x) on the interval (0, π) for
this problem

1. Introduction

Assume that Q(x) is a real-valued function in L2(0, π), α and β are real

numbers such that 0 < α < 1 and β > 0. Define ρ(x) =

{
1, x < π

2
α2, x > π

2

and

denote by L = L(Q(x), ρ(x), β) a Sturm–Liouville problem in L2(0, π) that is
given by the differential equation

(1) ℓy := −y′′(x) +Q(x)y(x) = λρ(x)y(x), x ∈ (0,
π

2
) ∪ (

π

2
, π)

with the boundary conditions

U(y) := y′(0) = 0,(2)

V (y) := y′(π) = 0,(3)

and the jump conditions

(4)





y(
π

2
+ 0) = βy(

π

2
− 0) ,

y′(
π

2
+ 0) = β−1y′(

π

2
− 0),

where λ is the spectral parameter.
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The equation (1) appears in some physical problems. For example, an equa-
tion for vibration in a solid 0 < x < π, composed of a layer 0 < x < π

2 of
material in contact with a layer π

2 < x < π of another material, is given by,

p(x)
∂2u(x, s)

∂s2
=
∂2u(x, s)

∂x2
+ q(x)u(x, s), x ∈ (0,

π

2
) ∪ (

π

2
, π), s > 0,

where, p(x) is a piecewise continuous function in (0, π2 ) ∪ (π2 , π) which has the

form p(x) =

{
1, 0 < x < π

2
α−2, π

2 < x < π
(see [1] and [11]). By using the classical

Fourier method, an equation like (1) can be obtained.
Spectral problems for Sturm-Liouville operators were extensively well stud-

ied in [2], [3], [8] and [10].
Boundary value problems with discontinuities inside the interval often ap-

pear in mathematics, mechanics, physics, geophysics and other branches of
natural properties. The jump conditions like (4) appear in some important
physical problem. [5] is well known work about discontinuous inverse eigen-
value problems.

Half-inverse problem for a Sturm–Liouville operator consists in reconstruc-
tion of this operator from its spectrum and half of the potential. The first result
on the half-inverse problem is due to Hochstadt and Lieberman [6]. Later, Hald
generalized a theorem in [5]. In [4] and [9] some new uniqueness results in in-
verse spectral analysis with partial information on the potential for scalar and
matrix Sturm–Liouville equations were given, respectively. In 2001, the exis-
tence of solution to the half-inverse problem was studied by Sakhnovich [12].
In [7], half-inverse problems were solved for Sturm–Liouville operators with
singular potentials. In this work, authors gave the necessary and sufficient
condition for solvability of the half-inverse spectral problem for the class of
Sturm–Liouville operators with singular potentials from the space W−1

2 (0, 1) .
In [13], a half-inverse problem was solved for the Sturm–Liouville equation with
eigenparameter dependent boundary conditions. In [14], a similar problem was
solved for Dirac operator by using Hochstadt and Lieberman’s method.

In the present paper, we consider a Sturm-Liouville operator with jump con-
ditions inside the interval. The aim of this work is to solve half-inverse problem
by using the Hochstadt and Lieberman’s method for this kind of operator. We
will prove that the coefficients of the boundary value problem can be uniquely
determined by the potential in (0, π2 ) and a single spectrum.

2. Preliminaries

Let ϕ(x, λ) be the solution of (1), satisfies the initial conditions ϕ(0, λ) = 1,
ϕ′(0, λ) = 0 and jump conditions (4).

It is clear that the equation (1) can be written as follows

(5) − 1√
ρ(x)

(
1√
ρ(x)

y′

)′

+ q(x)y = λy, x ∈ (0,
π

2
) ∪ (

π

2
, π).
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Here q(x) = Q(x)
ρ(x) . Therefore, the function ϕ(x, λ) satisfies the following integral

equation for x < π
2

ϕ(x, k) = cos kγ(x) +

∫ x

0

sin k (γ(x)− γ(t))

k

√
ρ(t)q(t)ϕ(t, k)dt,

where γ(x) =
∫ x

0

√
ρ(t)dt, k =

√
λ. If the solution ϕ(x, λ) is continued to the

interval (π2 , π) as

ϕ(x, k) = A(k) cos kγ(x) +B(k) sin kγ(x)

+

∫ x

0

sin k (γ(x)− γ(t))

k

√
ρ(t)q(t)ϕ(t, k)dt,

then from the jump condition (4) we obtain

ϕ(x, k) = β+ cos kγ(x) + β− cos k
(
2γ(

π

2
)− γ(x)

)

+
1

k

∫ π

2

0

β+ sin k (γ(x)− γ(t))
√
ρ(t)q(t)ϕ(t, k)dt

+
1

k

∫ π

2

0

β− sin k
(
2γ(

π

2
)− γ(x) − γ(t)

)√
ρ(t)q(t)ϕ(t, k)dt

+
1

k

∫ x

π

2

sink (γ(x)− γ(t))
√
ρ(t)q(t)ϕ(t, k)dt, x >

π

2
.

Here β± = 1
2

(
β ± 1

αβ

)
.

It is easily verified from above integral equations that the following asymp-
totic relations are valid as |k| → ∞:

ϕ(x, k) = cos kγ(x) +O

(
1

k
exp |τ | γ(x)

)
for x <

π

2
,(6)

ϕ(x, k) = β+ cos kγ(x) + β− cos k
(
2γ(

π

2
)− γ(x)

)
(7)

+O

(
1

k
exp |τ | γ(x)

)
for x >

π

2
.

Now, let the function ψ(x, λ) be the solution of (1), which satisfies the initial
conditions ψ(π, λ) = 1, ψ′(π, λ) = 0 and jump conditions (4). The function

(8) ∆(λ) =W [ϕ, ψ] = −ϕ′(π, λ) = ψ′(0, λ)

is called the characteristic function of the problem L. Let {λn} be the zeros
of ∆(λ). It is clear that the numbers λn coincide with the eigenvalues of the
problem L. From (7) and (8) we have

∆(λ) = αλ
1

2

[
−β+ sin

√
λ
π

2
(1 + α) + β− sin

√
λ
π

2
(1− α)

]
(9)

+O (exp |τ | γ(π)) .
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Note that for λ ∈ Gǫ := {λ : |λ− λn| > ε},

(10) |∆(λ)| ≥ C1 |λ|
1

2 exp |τ | γ(π),
where ε is sufficiently small number. The following theorem can be proved by
using same methods in [2] and [15].

Theorem 1. The eigenvalues {λn}n≥0 of the problem L are real, simple and

have the following asymptotics

(11)
√
λn =

2n

1 + α

[
1 +O(

1

n
)

]

for n→ ∞.

The following representation holds (see [2])

(12) ψ(x, λ) = cosα
√
λ (π − x) +

∫ π

x

K(x, t) cosα
√
λ (π − t) dt for x >

π

2
,

where K(x, t) is a continuous function which does not depend on λ.

3. Main results

Now we state the main result of this work. It is assumed in what follows that
if a certain symbol s denotes an object related to L, then the corresponding

symbol s̃ with tilde denote the analogous object related to L̃. Let us denote by
ϕ(x, λn), the eigenfunction which corresponds to λn.

Lemma 1. If λn = λ̃n for all n ∈ N, then ρ(x) = ρ̃(x) and β = β̃.

Proof. From (11), a direct calculation yields α = α̃, i.e., ρ(x) = ρ̃(x).

Now, we shall prove that β = β̃. Since λn = λ̃n; ∆(λ) and ∆̃(λ) are entire
functions in λ of order 1

2 , by Hadamard’s factorization theorem,

(13) ∆(λ) = C∆̃(λ)

is valid for all λ ∈ C.

Denote ∆0(λ) := αλ
1

2

[
−β+ sin

√
λπ

2 (1 + α) + β− sin
√
λπ

2 (1− α)
]
, and we

can write

(14) ∆0(λ) − C∆̃0(λ) = C
[
∆̃(λ)− ∆̃0(λ)

]
− [∆(λ) −∆0(λ)] .

It follows from (9) and (14) that

C
[
∆̃(λ)− ∆̃0(λ)

]
− [∆(λ) −∆0(λ)]

= αλ
1

2

{[
−β+ sin

√
λ
π

2
(1 + α) + β− sin

√
λ
π

2
(1− α)

]
(15)

−C
[
−β̃+ sin

√
λ
π

2
(1 + α) + β̃ sin

√
λ
π

2
(1− α)

]}
.
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Multiplying both sides of (15) by sin k π
2 (1 + α) and integrating with respect

to k in (0, T ) with any positive real number T , we get
∫ T

0

k−1

α

{
C
[
∆̃(k)− ∆̃0(k)

]
− [∆(k)−∆0(k)]

}
sink

π

2
(1 + α) dk

=

∫ T

0

{[
−β+ sin k

π

2
(1 + α) + β− sin k

π

2
(1− α)

]
sin k

π

2
(1 + α) dk(16)

− C

∫ T

0

[
−β̃+ sin k

π

2
(1 + α) + β̃ sink

π

2
(1− α)

]
sin k

π

2
(1 + α) dk.

Since ∆̃(k)− ∆̃0(k) = O (1) and [∆(k)−∆0(k)] = O (1) for k in (0, T ) , direct
calculation in (16) yields,

(17) Cβ̃+ − β+ = O(T−1).

By letting T → ∞, we conclude that

(18) β+ = Cβ̃+.

Similarly, if we multiply both sides of (15) by sin k π
2 (1− α) and integrate again

with respect to k on (0, T ) , we get

(19) β− = Cβ̃ .

(18) and (19) imply that C2 = 1, but since β+ and β̃+ are positive we conclude

that C = 1. Hence, β = β̃. This completes the proof. �

Theorem 2. If λn = λ̃n for all n ∈ N and Q(x) = Q̃(x) on
[
0, π2

]
, then

Q(x) = Q̃(x) almost everywhere on [0, π].

Proof. It follows from (12) that
(20)

ψ(x, λ)ψ̃(x, λ) =
1

2

[
1 + cos 2α

√
λ (π − x) +

∫ π

x

V (x, t) cos 2α
√
λ (π − t) dt

]
,

where V (x, t) is a continuous function which does not depend on λ.
Let us write the equation

(21) −ψ′′(x, λ) +Q(x)ψ(x, λ) = λρ(x)ψ(x, λ)

and

(22) −ψ̃′′(x, λ) + Q̃(x)ψ̃(x, λ) = λρ̃(x)ψ(x, λ).

Multiplying (21) and (22) by ψ̃(x, λ) and −ψ(x, λ), respectively, and adding
together we obtain

ψ̃′′(x, λ)ψ(x, λ) − ψ′′(x, λ)ψ̃(x, λ) +
(
Q(x)− Q̃(x)

)
ψ(x, λ)ψ̃(x, λ)

= λ (ρ(x)− ρ̃(x))ψ(x, λ)ψ̃(x, λ).
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Taking Lemma 1 into account we get

ψ̃′′(x, λ)ψ(x, λ) − ψ′′(x, λ)ψ̃(x, λ) +
(
Q(x)− Q̃(x)

)
ψ(x, λ)ψ̃(x, λ) = 0.

After integrating this equality on [0, π] , from the hypothesis Q(x) = Q̃(x) on[
0, π2

]
, we find

∫ π

π/2

[
Q̃(x)−Q(x)

]
ψ(x, λ)ψ̃(x, λ)dx(23)

=
[
ψ(x, λ)ψ̃′(x, λ) − ψ′(x, λ)ψ̃(x, λ)

]
(
∣∣∣
π/2

0
+

∣∣∣∣
π

π/2

)

= −ψ(0, λ)ψ̃′(0, λ)− ψ′(0, λ)ψ̃(0, λ).

Define

(24) H(λ) :=

∫ π

π/2

[
Q̃(x)−Q(x)

]
ψ(x, λ)ψ̃(x, λ)dx.

It is clear from (23) thatH(λn) = 0 for each eigenvalue λn. Therefore χ(λ) :=
H(λ)
∆(λ) is entire in λ. We obtain from (12) and (24) that |H(λ)| ≤ C exp (ταπ).

Thus, from (10) we get

|χ(λ)| ≤ C |λ|−
1

2 exp
[
τ
π

2
(α− 1)

]
.

Since 0 < α < 1, χ(λ) = O
(
λ−

1

2

)
for sufficiently large |λ| . Hence by Liouville’s

theorem χ(λ) = 0 for all λ. This means H(λ) = 0.

Define Ω(x) = Q̃(x) −Q(x). We get on the whole λ-plane,
∫ π

π
2

Ω(x)
(
1 + cos 2

√
λ (π − x)

)
dx

+

∫ π

π
2

Ω(x)

[∫ π

x

V (x, t) cos 2
√
λ (π − t) dt

]
dx = 0.

This equation can be written as

(25)

∫ π

π
2

Ω(x)dx +

∫ π

π
2

cos 2
√
λ (π − t)

[
Ω(t) +

∫ t

π
2

Ω(x)V (x, t)dx

]
dt = 0.

Letting λ→ ∞ for real λ in (25), we see from Riemann-Lebesque lemma that
∫ π

π
2

Ω(x)dx = 0

and so ∫ π

π
2

cos 2
√
λ (π − t)

[
Ω(t) +

∫ t

π
2

Ω(x)V (x, t)dx

]
dt = 0.
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Therefore, it follows from the completeness of the function cos 2
√
λ (π − x) in

L2

(
π
2 , π

)
that

(26) Ω(t) +

∫ t

π
2

Ω(x)V (x, t)dx = 0, t ∈
(π
2
, π
)
.

Since the equation (26) is a homogenous Volterra integral equation, it has only

trivial solution. Hence, we have obtained Ω(x) = Q̃(x) −Q(x) = 0 on
(
π
2 , π

)
,

i.e., Q(x) = Q̃(x), almost everywhere on
(
π
2 , π

)
. This completes the proof. �

Corollary 1. The problem L(Q(x), ρ(x), β) is uniquely determined by the se-

quence {λn}n≥0 under the assumption Q(x) = Q̃(x) on
[
0, π2

]
.
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