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LOCALIZATION OF INJECTIVE MODULES OVER

w-NOETHERIAN RINGS

Hwankoo Kim and Fanggui Wang

Abstract. We give some characterizations of injective modules over w-
Noetherian rings. It is also shown that each localization of a GV-torsion-
free injective module over a w-Noetherian ring is injective.

1. Introduction

One of bad properties of injective modules is that they do not preserve
localization in general. However, there are some positive results as follows.
If a (commutative) ring R is Noetherian or hereditary, then localizations of
injective R-modules are also injective ([10, Theorem 4.88] or [1, Proposition 2]).
Recently Couchot investigated localizations of injective modules over valuation
rings ([1]) and arithmetical rings ([2]). The purpose of this article is to provide
another positive result if R is a w-Noetherian ring.

We first introduce some definitions and notation from [12, 16]. Throughout
we let R be a commutative ring with identity. For an R-module M , the dual
module HomR(M,R) of M is denoted by M ♭. Following [16, Definition 1.1],
an ideal J of a commutative ring R is called a Glaz-Vasconcelos ideal or a
GV-ideal, denoted by J ∈ GV(R), if J is finitely generated and the natural
homomorphism φ : R → J♭ (φ(r)(a) = ra for all r ∈ R and a ∈ J) is an
isomorphism. Recall from [16, Definition 1.3] that an R-module M is called a
GV-torsion-free module if whenever Jx = 0 for some J ∈ GV(R) and x ∈ M ,
then x = 0. Then it is clear that R is a GV-torsion-free R-module, and that
every submodule of a GV-torsion-free module is GV-torsion-free. It is also
introduced in [16, Definition 2.1] that a GV-torsion-free R-module M is said

to be a w-module if, for any J ∈ GV(R), Ext1R(R/J,M) = 0. Then it is clear
that R is a w-module, and that for a GV-torsion-free R-module M , E(M),
the injective envelope of M , is a w-module. Note also that the concept of
w-modules over commutative rings generalizes that of w-modules over integral
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domains in [7, 13]. Let w-Max(R) denote the set of w-ideals of R maximal
among proper w-ideals of R and we call m ∈ w-Max(R) a maximal w-ideal of
R. Then by [16, Proposition 3.8] every maximal w-ideal is prime. Let M be a
GV-torsion-free R-module. Then the w-envelope of M is defined by

Mw = {x ∈ E(M) | Jx ⊆ M for some J ∈ GV(R)}.

It follows from [16, Theorem 2.2] that a GV-torsion-free module M is a w-
module if and only if Mw = M . So M is a w-ideal when M is an ideal of R
with Mw = M . We say that a GV-torsion-free module M is said to be of finite
type if Mw = Nw for some finitely generated submodule N of M . In [15] Wang
and Zhang generalized the notion of w-Noetherian modules over commutative
rings: A w-module M is called a w-Noetherian module if M has the ascending
chain condition on w-submodules of M and R is said to be w-Noetherian if
R itself is a w-Noetherian module. It was shown in [16] that a w-module M
is w-Noetherian if and only if every submodule of M is of finite type. If R
is an integral domain, then the notion of w-Noetherian rings is the same as
that of SM (strong Mori) domains introduced by Wang and McCasland in [14].
It is shown in [16, Corollary 4.4] that if R is a w-Noetherian ring, then Rp

is Noetherian for each prime w-ideal p of R. Any undefined terminology is
standard, as in [4, 5, 10].

2. Main result

We begin with this section by giving a Baer-like characterization for a w-
module.

Theorem 2.1. Let R be a commutative ring and let E be a w-module over R.

Then the following statements are equivalent:

(1) E is an injective R-module;
(2) Ext

1
R(R/I,E) = 0 for any w-ideal I of R;

(3) for any w-ideal I of R, a homomorphism f : I → E can be extended to

R;
(4) for any w-submodule A of a w-module B, a homomorphism f : A → E

can be extended to B;
(5) for any w-submodule A of a w-module B, Ext1R(B/A,E) = 0;

(6) for any GV-torsion-free module C, Ext1R(C,E) = 0.

Proof. (1) ⇒ (2) This is trivial.
(2) ⇒ (1) Let I be an ideal of R and let f : I → E be a homomorphism.

Since E is a w-module, Ext1R(Iw/I, E) = 0 by [16, Theorem 3.6]. From the
exact sequence 0 → Iw/I → R/I → R/Iw → 0, we have the exact sequence

0 = Ext
1
R(R/Iw, E) → Ext

1
R(R/I,E) → Ext

1
R(Iw/I, E) = 0.

Thus Ext1R(R/I,E) = 0, and therefore, E is injective.
(2) ⇔ (3) This is clear.
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The proofs of the other equivalences are easy or similar to those of (1) ⇔
(2) ⇔ (3). �

Corollary 2.2. Let E be a w-module. If E is not injective, then there is a

w-ideal I of R and a homomorphism f : I → E such that f cannot be extended

to R.

Let R be an integral domain. Recall that an R-module M is said to be
divisible if for every nonunit r ∈ R and for every m ∈ M , the equation rx = m
admits a solution x ∈ M .

Lemma 2.3 ([4, Lemma I.7.2]). For a module M over a domain R the following

are equivalent:

(1) M is divisible;
(2) for every r ∈ R, every homomorphism rR → M can be extended to a

homomorphism R → M ;
(3) Ext

1
R(R/rR,M) = 0 for every r ∈ R;

(4) Ext
1
R(R/I,M) = 0 for every invertible ideal I of R.

It is well known that a domain R is a Dedekind domain if and only if every
divisible R-module is injective, and that for a torsion-free module M over an
integral domain, M is divisible if and only if M is injective. It is also well
known that an integral domain R is a unique factorization domain if and only
if every w-ideal of R is principal (cf., [6]). Thus we have the following:

Corollary 2.4. Let R be a unique factorization domain and let E be a w-
module. Then E is injective if and only if E is divisible.

To give a Cohen-type theorem of Baer’s criterion for GV-torsion-free injec-
tive modules over w-Noetherian rings, we need the following:

Lemma 2.5. Let A be a w-submodule of the w-module M . Then for any

x ∈ M \A and r ∈ R, Prx := {r′ ∈ R | r′(rx) ∈ A} is a w-ideal of R.

Proof. For any r′ ∈ (Prx)w, there exists a J ∈ GV(R) such that Jr′ ⊆ Prx.
Then Jr′(rx) ⊆ A. Since A is a w-module, we have r′(rx) ∈ A. So r′ ∈ Prx,
and hence Prx is a w-ideal of R. �

Theorem 2.6. Let R be a w-Noetherian ring and let A be a w-submodule

of the w-module M . Then for any x ∈ M \ A, there exists r ∈ R such that

Prx = {r′ ∈ R | r′(rx) ∈ A} is a prime w-ideal of R.

Proof. Let Cx := {Prx | rx 6∈ A}. Then P1x ∈ Cx, so Cx is nonempty. By
Lemma 2.5, Prx is a w-ideal of R for any r ∈ R. Since R is a w-Noetherian
ring, there exists an r ∈ R such that Prx is maximal in Cx. Since Prx ∈ Cx,
rx 6∈ A, therefore 1 6∈ Prx, that is, Prx 6= R. For any st ∈ Prx with s 6∈ Prx,
we have srx 6∈ A. If y ∈ Prx, then yrx ∈ A, and so ysrx = s(yrx) ∈ A. Hence
Psrx = Prx. But t(srx) = st(rx) ∈ A, we get t ∈ Psrx = Prx. Therefore, Prx is
a prime w-ideal of R. �
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Theorem 2.7. Let R be a w-Noetherian ring and let E be a w-module over

R. Then the following statements are equivalent:

(1) E is injective;
(2) for any prime w-ideal p of R, every R-module homomorphism f : p →

E can be extended to R;
(3) for any prime w-ideal p of R, Ext1R(R/p, E) = 0.

Proof. (1) ⇒ (2) By Baer’s criterion.
(2) ⇒ (1) Let A be a w-submodule of a w-module B. Consider the following

diagram:

E

0 // A
i //

f

OO

B

Let C consist of all pairs (A′, g′), where A ⊆ A′ ⊆ B, A′ is a w-submodule
of B, and g′ : A′ → E extends f . Note that C 6= ∅ for (A, f) ∈ C . Define a
partial order on C by

(A1, g1) ≤ (A2, g2) if and only if A1 ⊆ A2 and g2 extends g1.

By Zorn’s Lemma, there exists a maximal pair (A0, g0) in C . If A0 = B, then
we are done. Now assume that A0 6= B. Then by Theorem 2.6, there exists
an x ∈ B \ A0 such that Px is a prime w-ideal of R. Define h : Px → E by
h(r) = g0(rx) for r ∈ Px. By hypothesis, h can be extended to R. Define
g : A0 +Rx → E by g(a+ rx) = g0(a) + h(r), a ∈ A0 and r ∈ R. It is routine
to verify that g is well-defined. Obviously, g extends g0. So (A0 +Rx, g) ∈ C ,
a contradiction. Therefore E is an injective module.

(2) ⇔ (3) It is straightforward from the following exact sequence: 0 →
HomR(R/p, E) → HomR(R,E) → HomR(p, E) → Ext

1
R(R/p, E) → 0. �

In order to give another proof of Theorem 2.7, which is suggested by the
referee, we first introduce notation we need.

Let M be a module and N a submodule of M . Set N(w,M) = {x ∈ M |
Jx ∈ N for some J ∈ GV (R)}. If N(w,M) = N , then N is called a relative w-
submodule ofM . It is clear that ifN is a relative w-submodule ofM , then M/N
is GV-torsion-free, and if N(w,M) = M , then M/N is GV-torsion. Moreover,
a relative w-submodule of M is not a w-module in general, for example, the
(total) GV -torsion submodule of a module M is a relative w-submodule, but
is not a w-submodule. When M is a w-module, the relative w-submodules of
M are actually w-submodules of M .

Lemma 2.8. Let M be a finite type module. Then there is a finitely generated

submodule N such that N(w,M) = M .

Proof. Since M is of finite type, there is a finitely generated submodule N of
M such that M/N is GV-torsion. It is clear that N(w,M) = M . �
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The following result can be easily obtained.

Theorem 2.9. Let M be a module. Then M is a w-Noetherian module if and

only if M has ACC on relative w-submodules of M .

Let M be an R-module. A prime ideal p of R is called an associated prime
ideal of M if there exists x ∈ M \ {0} such that p is a prime ideal minimal
over ann(x). As in the domain case, we have that a commutative ring R is a
w-Noetherian ring if and only if every finite type w-module is a w-Noetherian
module ([15]). We can rewrite [15, Theorem 3.18] as follows:

Theorem 2.10. Let R be a w-Noetherian ring and let M be a nonzero finite

type GV-torsion-free module. Then there is a finite ascending chain of relative

w-submodules of M :

0 = N0 ⊂ (N1)(w,M) ⊂ (N2)(w,M) ⊂ · · · ⊂ (Nn−1)(w,M) ⊂ (Nn)(w,M) = M

such that (Ni−1)(w,M) ⊂ Ni and Ni/(Ni−1)(w,M)
∼= R/pi for some prime w-

ideal pi of R, i = 1, . . . , n.

Proof. Choose an associated prime ideal p1 of M . Then p1 is a prime w-ideal
of R and p1 = ann(x1) for some x1 ∈ M . Set N1 := Rx1 ⊆ M . Then
N1 = R/p1. If (N1)(w,M) = M , then we have 0 = N0 ⊂ (N1)(w,M) = M ,
as desired. If (N1)(w,M) 6= M , then M/(N1)(w,M) is a nonzero finite type
GV-torsion-free R-module. Take x2 ∈ M \ (N1)(w,M) such that ((N1)(w,M) +
Rx2)/(N1)(w,M)

∼= R/p2 for some prime w-ideal p2 of R. SetN2 := (N1)(w,M)+
Rx2. If (N2)(w,M) = M , then we have 0 = N0 ⊂ (N1)(w,M) ⊂ (N2)(w,M) = M ,
as desired. If (N2)(w,M) 6= M , then . . . . Continuing this process, Theorem 2.9
gives an ascending chain as in the statement of the theorem. �

It was shown in [7, Corollary 3.3] that for a w-module M over a domain R,

M is injective if and only if Ext1R(R/I,M) = 0 for any w-ideal I of R. This
result readily extends to any commutative ring by using [16, Theorem 3.6], and
can be strengthened as follows.

Theorem 2.7′. Let R be a w-Noetherian ring and let E be a w-module. Then
E is injective if (and only if) Ext1R(R/p, E) = 0 for any prime w-ideal p of R.

Proof. Let M be a GV-torsion-free finitely generated R-module. By Theorem
2.10, there is a finite ascending chain of relative w-submodules of M :

0 = N0 ⊂ (N1)(w,M) ⊂ (N2)(w,M) ⊂ · · · ⊂ (Nn−1)(w,M) ⊂ (Nn)(w,M) = M

such that (Ni−1)(w,M) ⊂ Ni and Ni/(Ni−1)(w,M)
∼= R/pi for some prime

w-ideal pi of R, i = 1, . . . , n. Thus we have Ext
1
R(N1, E) = 0. Set Mi :=

(Ni)(w,M). Since 0 → N1 → M1 → M1/N1 → 0 is exact and M1/N1 is GV-

torsion, we have Ext
1
R(M1, E) = 0. Since 0 → M1 → N2 → N2/M1 → 0 is

exact and N2/M1
∼= R/p2, we have Ext

1
R(N2, E) = 0. As 0 → N2 → M2 →

M2/N2 → 0 is exact and M2/N2 is GV-torsion, we have also Ext
1
R(M2, E) = 0.
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Continuing this process, we have that Ext
1
R(M,E) = 0. Therefore E is injec-

tive. �

Recall from [12, Definition 1.2] that a sequence A → B → C of R-modules
and homomorphisms is said to be w-exact if the sequence Am → Bm → Cm is
exact for any maximal w-ideal m of R. The following result comes from [12,
Theorem 3.4].

Lemma 2.11. Let A → B → C → 0 be a w-exact sequence and let N be a

w-module. Then

0 → HomR(C,N) → HomR(B,N) → HomR(A,N)

is exact.

Recall from [12] that a GV-torsion-free R-module M is of finite type if and
only if there exists a w-exact sequence F0 → M → 0, while a GV-torsion-
free R-module M is said to be of finitely presented type if there is an w-exact
sequence F1 → F0 → M → 0, where F0 and F1 are finitely generated free
R-modules. A commutative ring R is called a w-coherent ring if every finite
type ideal of R is of finitely presented type. Then it is shown in [12, Corollary
3.3] that every w-Noetherian ring is w-coherent.

Lemma 2.12. Let p be a prime w-ideal of R. Suppose M is a finitely presented

type module and N is a w-module. Then we have:

(a) The natural homomorphism

θ : HomR(M,N)p → HomRp
(Mp, Np)

is an isomorphism.

(b) If R is w-Noetherian and M is finitely generated, then the induced

homomorphism

θ̄ : Ext1R(M,N)p → Ext
1
Rp

(Mp, Np)

is an isomorphism.

Proof. (a) Because M is a finitely presented type R-module, there exist finitely
generated free R-modules F0 and F1 such that F1 → F0 → M → 0 is a w-exact
sequence. Then

(F1)p → (F0)p → Mp → 0

is exact. By Lemma 2.11, we have the following commutative diagram with
exact rows:

0 // HomR(M,N)p //

θ

��

HomR(F0, N)p

∼=

��

// HomR(F1, N)p

∼=

��
0 // HomRp

(Mp, Np) // HomRp
((F0)p, Np) // HomRp

((F1)p, Np).

So θ is an isomorphism by the Five Lemma. From the argument above we
remark that if M is of finite type, then θ is a monomorphism.
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For (b), we assume first that M is finitely generated. Let 0 → A → F →
M → 0 be exact, where F is finitely generated free. Thus A is of finite type.
Since R is w-Noetherian, A is of finitely presented. Then we have the following
commutative diagram with exact rows:

HomR(F,N)p //

∼=

��

HomR(A,N)p

θA

��

// Ext1R(M,N)p //

θ̄

��

0

HomRp
(Fp, Np) // HomRp

(Ap, Np) // Ext1Rp
(Mp, Np) // 0

Note that θA is an isomorphism. Hence θ̄ is an isomorphism. �

Theorem 2.13. Let R be a w-Noetherian ring. If E is a GV-torsion-free

injective R-module, then Ep is an injective Rp-module for any maximal w-ideal
p of R.

Proof. Suppose E is injective over R. Let X be a finitely generated Rp-module.
Then we can write X = Mp for some finitely generated R-module M . Since R
is w-Noetherian, M is of finitely presented type. By Lemma 2.12, we have that

Ext
1
Rp

(X,Ep) = Ext
1
Rp

(Mp, Ep) = Ext
1
R(M,E)p = 0.

Hence Ep is injective over Rp . �

In the previous version of this paper it is shown that each localization of
a GV-torsion-free injective module over a coherent SM domain is injective by
using the same arguments as those of [2, Lemma 9 and Theorem 10]. As
the referee suggests, Theorem 2.13 and the result just mentioned above can
be better improved by proving that each localization of any GV-torsion-free
injective R-module is injective if R is w-Noetherian. First it is necessary to
show the following result, which is the w-theoretic analogue of the Bass-Matlis-
Papp Theorem for Noetherian rings (cf., [9]):

Theorem 2.14. The following conditions are equivalent for a commutative

ring R :

(1) R is a w-Noetherian ring;
(2) each direct sum of GV-torsion-free injective R-modules is injective;
(3) each GV-torsion-free injective R-module is a direct sum of indecompos-

able GV-torsion-free injective R-modules.

Proof. (1) ⇔ (2) [15, Theorem 4.4] (or [8, Theorem 2.9]).
(1) ⇒ (3) [15, Theorem 4.5(4)] (or [8, Corollary 2.8]).
(3) ⇒ (2) This follows by an easy modification of the proof of [11, Theorem

2]. However, for the sake of completeness we give its proof here. Let {Ei}i∈I

be a family of GV-torsion-free injective R-modules, where I is an index set and
let F := E(

⊕
i∈I Ei). Then by hypothesis, F =

⊕
j∈J Fj , where each Fj is

an indecomposable GV-torsion-free injective R-module and J is an index set.
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Since
⊕

i∈I Ei is an essential extension of F , it has a nonzero intersection with
each Fj . Hence Bj := Fj ∩ (Ei1 ⊕ · · ·⊕Ein) 6= 0 for some i1, . . . , in (depending
on j). But Fj is indecomposable, so Fj = E(Bj) ⊆ Ei1 ⊕ · · · ⊕ Ein . It follows
that

⊕
i∈I Ei = F is injective. �

There is an example of a non-Noetherian (coherent) SM domain: Let K be a
field and {Xα} be a countably infinite set of indeterminates. Then the polyno-
mial ring R := K[{Xα}] is a (coherent) SM domain which is not Noetherian. It
follows from [3, Corollary 17] that the localization ES of any injective R-module
E is an injective RS-module. Thus the following result is a generalization of
the Noetherian case, and shows that one aspect of the previous example carries
over to the most general case.

Theorem 2.15. Let R be a w-Noetherian ring. Then each localization of any

GV-torsion-free injective R-module is injective.

Proof. Let E′ be an injective w-module over R and S a multiplicative subset
of R. Since RS is flat over R, a module over RS is injective if and only if it is
injective over R. So, since E′ is a direct sum of indecomposable modules of the
form E(R/p) where p is a prime w-ideal (by Theorem 2.14 and [15, Theorem
4.5(1)]), it is enough to show that ES is injective over R if E := E(R/p). Since
E is a module over Rp, if S

′ is the image of S by the natural map R → Rp,
then ES

∼= ES′ . Since Rp is Noetherian, ES′ is injective over Rp, whence ES

is injective over R. �
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