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SEMIGROUP PRESENTATIONS FOR CONGRUENCES

ON GROUPS

Gonca Ayık and Basri Çalışkan

Abstract. We consider a congruence ρ on a group G as a subsemigroup
of the direct product G × G. It is well known that a relation ρ on G is
a congruence if and only if there exists a normal subgroup N of G such
that ρ =

{

(s, t) : st−1
∈ N

}

. In this paper we prove that if G is a finitely
presented group, and if N is a normal subgroup of G with finite index,
then the congruence ρ =

{

(s, t) : st−1
∈ N

}

on G is finitely presented.

1. Introduction

Finite presentability of semigroup constructions has been widely studied in
recent years (see, for example [1, 2, 6, 8, 9]). One construction is an extension
of a semigroup by a congruence. Let S and T be semigroups and let ρ be
a congruence on S. If S/ρ is isomorphic to T , then S is called an extension

of T by ρ. There is a similar construction in group theory. An extension of

a group H by a group N is a group G having N as a normal subgroup and
G/N ∼= H . It is known that if H and N are both finitely presented groups, then
the extension of them is finitely presented (see [7, Corollary 10.2]). Recently,
it is proved in [3] that, for given a semigroup S and a congruence ρ on S, if ρ
is finitely presented as a subsemigroup of the direct product S×S, then S and
S/ρ are finitely presented. In [3] finite presentability of ρ on a finitely presented
infinite semigroup is an open problem. More recently, for inverse semigroups
S and T , and for a surjective homomorphism π : S → T with kernel K which
is a congruence on S, it is showed in [4] that how to the obtain a presentation
for K from a given a presentation for S and vice versa. It is also investigated
in [4] the relationship between finite presentability of inverse semigroups and
their kernels.

Let G be a group and let N be a normal subgroup of G with finite index.
Then it is known that if G is finitely presented, then N is also finitely presented
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(see [7, Corollary 9.1]). However the analog of this result is not true for semi-
groups. For example, consider the free monogenic semigroup S = 〈x | 〉 and
ρ = S× S. It is known that ρ = S× S is not finitely generated as a semigroup
although S is finitely presented and S/ρ is finite (see [9]). If a group G is
finitely presented as a group, then it is known that G is also finitely presented
as a semigroup (see, [9]). In this paper we consider groups as semigroups. For
a group G and its a normal subgroup N , the relation

ρN =
{

(s, t) : st−1 ∈ N
}

defined on G is a congruence. Conversely, if ρ is a congruence on G, then the
subset

Nρ =
{

st−1 : (s, t) ∈ ρ
}

of G is a normal subgroup of G (see, [6]). We note that given a normal subgroup
N of a group G, since the congruence ρN on G is defined by aρb if and only
if Na = Nb, it follows that G/N = G/ρ. In this paper we prove that given
a normal subgroup N of G with finite index, if G is finitely presented, the
congruence ρN is finitely presented.

In the sequel, unless otherwise is stated, given a congruence relation ρ on a
semigroup S by a generating set of ρ we mean a subset X of ρ which generates
ρ as a subsemigroup in S × S. We will explicitly state that ρ is generated by
X as congruence if we mean that ρ is the smallest congruence in S containing
X .

2. Presentation for ρN

We start with defining semigroup presentation. Let A be an alphabet, let
A+ be the free semigroup on A (i.e., the set of all non-empty words over A)
and let A∗ be the free monoid on A (i.e., A+ together with the empty word,
denoted by ε). A semigroup presentation is a pair 〈A | R〉 with R ⊆ A+ ×A+.
A semigroup S is defined by the presentation 〈A | R〉 if S is isomorphic to the
semigroup A+/σ, where σ is the congruence on A+ generated by R (i.e., the
smallest congruence on A+ containing R). For any two words w1, w2 ∈ A+ we
write w1 ≡ w2 if they are identical words and write w1 = w2 if w1σ = w2σ
(i.e., if they represent the same element in S). Therefore, the relation w1 = w2

holds in S if and only if this relation is a consequence of R, that is, there is a
finite sequence w1 ≡ α1 → α2 → · · · → αk ≡ w2 of words from A+, in which
every term αi (1 < i ≤ k) is obtained from αi−1 by applying one relation from
R (see [5, Proposition 1.5.9]). A semigroup S is called finitely presented if S
has a presentation 〈A | R〉 such that both A and R are finite.

We first find a generating set for the congruence ρN as a subsemigroup from
a given generating set for N . Second we construct a presentation for ρN from
a given presentation for N . Finally we conclude that ρN is finitely presented
when G is finitely presented and the normal subgroup N has finite index in G.
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Lemma 2.1. Let N be a normal subgroup of a group G with index n. If G is

finitely generated, then the congruence ρN is a finitely generated semigroup.

Proof. Since N is a normal subgroup of index n, then there exist u1, . . . , un ∈ G
such that G/N = {Nu1, Nu2, . . . , Nun}. Take U = {u1, . . . , un} as a represen-
tative set of G/N . Suppose that a subset X of N is a generating set of N and
that e is the identity element of G. Then we claim that the set

Y = {(e, x), (x, e), (u, u) : x ∈ X,u ∈ U}

is a generating set for ρN . To prove this claim we need to show that any element
(s, t) ∈ ρN can be written as a product of some elements of Y . Since st−1 ∈ N ,
there exists an element u ∈ U such that s, t ∈ Nu (where Nu = Nt). Since X
is generating set for N , there exist x1, . . . , xk, y1, . . . , yl ∈ X such that

s = x1 · · ·xku and t = y1 · · · ylu.

Hence we have

(s, t) = (s, e)(e, t) = (x1, e) · · · (xk, e)(e, y1) · · · (e, yl)(u, u).

Since G is finitely generated and the N has finite index, N is finitely gener-
ated, and so there exists a finite generating set X for N . Since |Y | = 2|X |+ n
is finite, ρN is finitely generated. �

Let X = {xi : i ∈ I} be a generating set for N , and let U = {u1, . . . , un} be
a representative set of G/N . If e is the identity element of G, then, for each
xi ∈ X , we denote the elements (xi, e) and (e, xi) by x1i and x2i, respectively,
and denote the elements (uj , uj) of Y by vj for each 1 ≤ j ≤ n. Then we have
just proved that Y = X1 ∪X2 ∪X3 is a generating set for ρN where

X1 = {x11, . . . , x1m}, X2 = {x21, . . . , x2m} and X3 = {v1, . . . , vn}.

For a word w ≡ xi1xi2 · · ·xik ∈ X+ we denote the words

x1i1 · · ·x1ik ≡ (xi1 , e) · · · (xik , e) and x2i1 · · ·x2ik ≡ (e, xi1) · · · (e, xik)

by w and w, respectively.
Since N is normal, for any ui, uj ∈ U , there exists uij ∈ U such that

(Nui)(Nuj) = Nuij . Thus we have a word wij ∈ X+, which represents an
element of N , such that the relation uiuj = wijuij holds. Since ujxi ∈ ujN =
Nuj for any uj ∈ U and xi ∈ X , there exists a word wuj ,xi

∈ X+, which
represents an element of N , such that the relation ujxi = wuj ,xi

uj holds. We
fix all wij and wuj ,xi

which are given above. Now we state and prove the main
theorem of this paper:

Theorem 2.2. Let N be a normal subgroup of a group G with index n. With

above notations if P = 〈X | R〉 is a semigroup presentation for N , then Q =
〈Y | Q1 ∪Q2 ∪Q3 ∪Q4〉 is a semigroup presentation of ρN where

Q1 =
{

r = s, r = s : (r = s) ∈ R
}

,

Q2 = {x2ix1j = x1jx2i : xi, xj ∈ X} ,
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Q3 =
{

vivj = wijvij , vivj = wijvij : 1 ≤ i, j ≤ n
}

,

Q4 =
{

vix1j = wui,xj
vi, vix2j = wui,xj

vi : ui ∈ U, xj ∈ X
}

.

Proof. From Lemma 2.1 we know that Y = 〈X1 ∪X2 ∪X3〉 is a generating
set for ρN . It is routine to check that all the relations in Q1 ∪ Q2 hold in
ρN . And we have already explained that the relations in Q3 ∪ Q4 hold in
ρN . Therefore, ρN is a homomorphic image of the semigroup defined by the
presentation Q = 〈Y | Q〉 where Q = Q1 ∪Q2 ∪Q3 ∪Q4.

For any word w ∈ Y +, first of all, there exist words s ∈ X∗

1 , t ∈ X∗

2 and
v ∈ X3 such that the relation w = stv is a consequence of the relations from
Q4, Q3 and Q2, respectively. Let w1 and w2 be two words on Y representing
the same element of ρN . Then there exist words s1, s2 ∈ X∗

1 , t1, t2 ∈ X∗

2 and
v1, v2 ∈ X3 such that the relations

w1 = s1t1v1 and w2 = s1t2v2

are consequence of the relations in Q2 ∪ Q3 ∪ Q4. Since the relation w1 = w2

hold in ρN , we must have the relations s1 = s2 and t1 = t2 holds in ρN , and
the words v1 and v2 are identical, that is v1 ≡ v2. Thus, since the relations
s1 = s2 and t1 = t2 are consequences of the relations in Q1, it follows that the
relation s = t is consequence of Q. Therefore, Q = 〈Y | Q1 ∪Q2 ∪Q3 ∪Q4〉 is
a semigroup presentation of the congruence ρN on G. �

Corollary 2.3. Let N be a normal subgroup of a group G with index n. If G
is a finitely presented group, then the congruence ρN on the semigroup G is a

finitely presented semigroup.

Proof. Since N is a normal subgroup of a finitely presented group G with
finite index, N is a finitely presented group, and so N is a finitely presented
semigroup. Therefore, there exists a finite semigroup presentation P = 〈X | R〉
for N . It follows from Lemma 2.1 and Theorem 2.2 that

Q = 〈Y | Q1 ∪Q2 ∪Q3 ∪Q4〉

is a finite semigroup presentation for ρN , and so ρN is finitely presented. �
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