CHARACTERIZATIONS OF GEOMETRICAL PROPERTIES OF BANACH SPACES USING ψ -DIRECT SUMS

ZHIHUA ZHANG, LAN SHU, JUN ZHENG, AND YULING YANG

ABSTRACT. Let X be a Banach space and ψ a continuous convex function on Δ_{K+1} satisfying certain conditions. Let $(X \bigoplus X \bigoplus \cdots \bigoplus X)_{\psi}$ be the ψ -direct sum of X. In this paper, we characterize the K strict convexity, K uniform convexity and uniform non- l_1^N -ness of Banach spaces using ψ -direct sums.

1. Introduction

A norm $\|\cdot\|$ on \mathbb{C}^n is said to be absolute if

 $\|(x_1, x_2, \dots, x_n)\| = \|(|x_1|, |x_2|, \dots, |x_n|)\|$ for any $(x_1, x_2, \dots, x_n) \in \mathbb{C}^n$ and normalized if

$$||(1,0,\ldots,0)|| = ||(0,1,0,\ldots,0)|| = \cdots = ||(0,\ldots,0,1)||.$$

The l_p -norms are such examples:

$$\|(x_1, x_2, \dots, x_n)\|_p = \begin{cases} (|x_1|^p + |x_2|^p + \dots + |x_n|^p)^{\frac{1}{p}}, & 1 \le p < \infty \\ \max\{|x_1|, |x_2|, \dots, |x_n|\}, & p = \infty. \end{cases}$$

Let AN_n be the family of all absolute normalized norms on \mathbb{C}^n . When n = 2 Bonsall and Duncan [2] showed the following characterization of absolute normalized norms on \mathbb{C}^2 . Namely, the set AN_2 of all absolute normalized norms on \mathbb{C}^2 is in one-to-one correspondence with the set Ψ_2 of all continuous convex functions on [0, 1] satisfying $\psi(0) = \psi(1) = 1$ and $\max\{1-t, t\} \leq \psi(t) \leq 1, 0 \leq t \leq 1$. The correspondence is given by

(1)
$$\psi(t) = \|(1-t,t)\|, \ 0 \le t \le 1.$$

 $\bigodot 2013$ The Korean Mathematical Society

Received September 8, 2011; Revised December 8, 2011.

²⁰¹⁰ Mathematics Subject Classification. 46B25, 46b20, 46B99.

Key words and phrases. absolute norm, K strict convexity, K uniform convexity, uniform non- $l_1^N\text{-ness.}$

The first and second authors are supported by Nation Natural Science Foundation of China(No. 11071178).

Indeed, for any $\psi \in \Psi_2$, define

$$\|(z,w)\|_{\psi} = \begin{cases} (|z|+|w|)\psi(\frac{|w|}{|z|+|w|}), & (z,w) \neq (0,0) \\ 0, & (z,w) = (0,0). \end{cases}$$

By calculation we have $\|\cdot\|_{\psi} \in AN_2$ and $\|\cdot\|_{\psi}$ satisfies (1). From this result, there are plenty of concrete absolute normalized norms of \mathbb{C}^2 which are not l_p -type.

In [13] K.-S. Saito, M. Kato and Y. Takahashi generalized the result to \mathbb{C}^n . Before stating it, we give some notations. For each $n \in N$ with $n \ge 2$, we put

$$\Delta_n = \left\{ (t_1, t_2, t_3, \dots, t_{n-1}) \in \mathbb{R}^{n-1} : t_j \ge 0, \sum_{j=1}^{n-1} t_j \le 1 \right\}$$

and define the set Ψ_n of all continuous convex functions on Δ_n satisfying the following conditions:

(A₀)
$$\psi(0, 0, \dots, 0) = \psi(1, 0, \dots, 0) = \dots = \psi(0, \dots, 0, 1),$$

 (A_1)

$$\psi(t_1, t_2, \dots, t_{n-1}) \ge (t_1 + t_2 + \dots + t_{n-1})\psi\left(\frac{t_1}{\sum_{i=1}^{n-1} t_i}, \dots, \frac{t_{n-1}}{\sum_{i=1}^{n-1} t_i}\right), \text{ if } \sum_{i=1}^{n-1} t_i \neq 0,$$

(A₂)
$$\psi(t_1, t_2, \dots, t_{n-1}) \ge (1 - t_1)\psi\left(0, \frac{t_2}{1 - t_1}, \dots, \frac{t_{n-1}}{1 - t_1}\right)$$
, if $t_1 \ne 1$,

(A₃)
$$\psi(t_1, t_2, \dots, t_{n-1}) \ge (1 - t_2)\psi\left(\frac{t_1}{1 - t_2}, 0, \dots, \frac{t_{n-1}}{1 - t_2}\right)$$
, if $t_2 \ne 1$,

 (A_n)

$$\psi(t_1, t_2, \dots, t_{n-1}) \ge (1 - t_{n-1})\psi\left(\frac{t_1}{1 - t_{n-1}}, \dots, \frac{t_{n-2}}{1 - t_{n-1}}, 0\right), \text{ if } t_{n-1} \ne 1.$$

÷

K.-S. Saito, M. Kato and Y. Takahashi in [13] showed that, for each $n \in \mathbb{N}$ with $n \geq 2$, AN_n and Ψ_n are in one-to-one correspondence under the following equation:

(2)
$$\psi(t_1, \dots, t_{n-1}) = \left\| (1 - \sum_{j=1}^{n-1} t_j, t_1, \dots, t_{n-1}) \right\|, (t_1, \dots, t_{n-1}) \in \Delta_n.$$

Indeed, for any $\psi \in \Psi_n$, the norm $\|\cdot\|_{\psi}$ on \mathbb{C}^n is defined as

$$\|(x_0, x_1, \dots, x_{n-1})\|_{\psi} = \begin{cases} \left(\sum_{i=0}^{n-1} |x_i|\right) \psi \left(\frac{|x_1|}{\sum_{i=0}^{n-1} |x_i|}, \dots, \frac{|x_{n-1}|}{\sum_{i=0}^{n-1} |x_i|}\right), \\ (x_0, x_1, \dots, x_{n-1}) \neq (0, \dots, 0) \\ 0, \quad (x_0, x_1, \dots, x_{n-1}) = (0, \dots, 0). \end{cases}$$

Moreover, M. Kato, K.-S. Saito and Tamura in [6] introduced the ψ -direct sums $(X_1 \bigoplus X_2 \bigoplus \cdots \bigoplus X_n)_{\psi}$ as follows. Let X_1, X_2, \ldots, X_n be Banach spaces and let $\psi \in \Psi_n$. Then the product space $X_1 \times X_2 \times \cdots \times X_n$ with the norm

$$\|(x_1, x_2, \dots, x_n)\|_{\psi} = \|(\|x_1\|, \|x_2\|, \dots, \|x_n\|)\|_{\psi}, \quad x_i \in X_i, \ 1 \le i \le n,$$

is a Banach space which is denoted by $(X_1 \bigoplus X_2 \bigoplus \cdots \bigoplus X_n)_{\psi}$. They showed that $(X_1 \bigoplus X_2 \bigoplus \cdots \bigoplus X_n)_{\psi}$ is strictly convex (uniformly convex) if and only if X_1, X_2, \ldots, X_n is strictly convex (uniformly convex) and $\psi \in \Psi_n$ is strictly convex. In [7] the authors presented that $X \bigoplus_{\psi} Y$ is uniformly non-square if and only if X and Y are uniformly non-square and $\psi \neq \psi_1, \psi_{\infty}$. Since the introduction of ψ -direct sums of Banach spaces, it has attracted plenty of attention and been treated by several authors (cf. [3, 4, 5, 12, 16]).

In particular, K.-I. Mitani and K.-S. Saito in [11] characterized the strict convexity, uniform convexity and uniform non-squareness of Banach spaces using ψ -direct sums $X \bigoplus_{\psi} X$. They showed that, if t_0 is a unique minimal point, a Banach space X is strictly convex if and only if, for each $x, y \in X$ with $x \neq y$, then

$$\|(1-t_0)x+t_0y\| < \frac{1}{\psi(t_0)}\|((1-t_0)x,t_0y)\|_{\psi}, \quad \psi \in \Psi_2.$$

As for the cases of uniform convexity and uniform non-squareness, they gained some similar results.

Our main purpose of this paper is to give the characterization of K strict convexity, K uniform convexity and uniform non- l_1^N -ness using ψ -direct sums $(X \bigoplus X \bigoplus \cdots \bigoplus X)_{\psi}$, we first characterize the K strict convexity using ψ direct sums. We show that, if ψ has a minimal point $s_0 = (t_1, t_2, \ldots, t_K)$, and $0 < t_i < 1, i = 1, 2, \ldots, K$ and $0 < \sum_{i=1}^{K} t_i < 1$, then a Banach space X is Kstrictly convex if and only if for any $x_0, x_1, \ldots, x_K \in X$, with x_0, x_1, \ldots, x_K linearly independent, we have

$$||t_0x_0 + t_1x_1 + \dots + t_Kx_K|| < \frac{1}{\psi(s_0)} ||(t_0x_0, t_1x_1, \dots, t_Kx_K)||_{\psi},$$

where $\sum_{i=0}^{K} t_i = 1$. As a result, we can give different characterization by choosing different ψ . In contrast with the result of K.-I. Mitani and K.-S. Saito [11], the uniqueness of t_0 is not required, but the linear independence of x and y is necessary. Moreover when K = 1, we get the characterization of strict convexity. In Section 3, we also characterize the K uniform convexity and

make Theorem 8 in [11] as our Corollary 3.5. In Section 4, the characterization of uniform non- l_1^N -ness is gained by adding the uniqueness of minimal point.

2. K strict convexity

A Banach space X is said to be K strictly convex (cf. [14]) if and only if for any K+1 elements x_0, x_1, \ldots, x_K in X, whenever $\|\sum_{i=0}^K x_i\| = \sum_{i=0}^K \|x_i\|$, then x_0, x_1, \ldots, x_K are linearly dependent.

The closed unit ball of a Banach space X is $\{x \in X : ||x|| \leq 1\}$ and is denoted by B_X , the unit sphere of X is $\{x \in X : ||x|| = 1\}$ and is denoted by S_X . It is obvious that when K = 1, X is strictly convex.

Proposition 2.1 (cf. [8]). Let X be a Banach space. For all non-zero elements $x_1, x_2, \ldots, x_n \in X$, the following inequality holds:

$$\begin{aligned} \|\sum_{j=1}^{n} x_{j}\| + \left(n - \|\sum_{j=1}^{n} \frac{x_{j}}{\|x_{j}\|}\|\right) \min_{1 \le j \le n} \|x_{j}\| \le \sum_{j=1}^{n} \|x_{j}\| \\ \le \|\sum_{j=1}^{n} x_{j}\| + \left(n - \|\sum_{j=1}^{n} \frac{x_{j}}{\|x_{j}\|}\|\right) \max_{1 \le j \le n} \|x_{j}\|. \end{aligned}$$

Lemma 2.2. Let X be a Banach space. Then the following assertions are equivalent.

(1) X is K strictly convex.

(2) For any $x_0, x_1, ..., x_K \in S_X$, whenever $\|\sum_{i=0}^K x_i\| = K + 1$, then x_0, x_1, \ldots, x_K are linearly dependent.

(3) If x_0, x_1, \ldots, x_K are incarry acponance. (3) If $x_0, x_1, \ldots, x_K \in S_X$ and x_0, x_1, \ldots, x_K are linearly independent, then for any $\{t_i\}_{i=0}^K$ satisfying $0 < t_i < 1, \sum_{i=0}^K t_i = 1$, there holds $\|\sum_{i=0}^K t_i x_i\| < 1$. (3') If $x_0, x_1, \ldots, x_K \in S_X$ and x_0, x_1, \ldots, x_K are linearly independent, then there exists $\{t_i\}_{i=0}^K$ with $0 < t_i < 1, \sum_{i=0}^K t_i = 1$, such that $\|\sum_{i=0}^K t_i x_i\| < 1$.

Proof. $(1) \Rightarrow (2)$ is obvious.

(2) \Rightarrow (1) Let any $x_0, x_1, \dots, x_K \in X \setminus \{0\}$, and $\|\sum_{i=0}^K x_i\| = \sum_{i=0}^K \|x_i\|$. By Proposition 2.1 we have $\|\sum_{i=0}^K \frac{x_i}{\|x_i\|}\| = K + 1$. Hence $\frac{x_0}{\|x_0\|}, \frac{x_1}{\|x_1\|}, \dots, \frac{x_K}{\|x_K\|}$ are linearly dependent, so do x_0, x_1, \ldots, x_K .

 $(2) \Rightarrow (3)$ Assume that the conclusion falls to hold. Then there exists $\{t_i\}_{i=0}^K$ satisfying $0 < t_i < 1, \sum_{i=0}^{K} t_i = 1$, but $\|\sum_{i=0}^{K} t_i x_i\| = 1$. Using Proposition 2.1 we have

$$\begin{aligned} &\|\sum_{i=0}^{K} t_{i} x_{i}\| + \left(K + 1 - \|\sum_{i=0}^{K} \frac{x_{i}}{\|x_{i}\|}\|\right) \min_{0 \le i \le K} \|t_{i} x_{i}\| \le \sum_{i=0}^{K} t_{i} \|x_{i}\| \\ &\le \|\sum_{i=0}^{K} t_{i} x_{i}\| + \left(K + 1 - \|\sum_{i=0}^{K} \frac{x_{i}}{\|x_{i}\|}\|\right) \max_{0 \le i \le K} \|t_{i} x_{i}\|. \end{aligned}$$

Hence $\|\sum_{i=0}^{K} \frac{x_i}{\|x_i\|}\| = K + 1$. So x_0, x_1, \ldots, x_K are linearly dependent. Contradiction.

 $(3) \Rightarrow (2)$ Clearly.

(2) \Rightarrow (3') We just need to let $t_i = \frac{1}{K+1}, i = 0, 1, \dots, K$.

 $(3') \Rightarrow (2)$ If there are $x_0, x_1, \ldots, x_K \in S_X$ and satisfying $\|\sum_{i=0}^K x_i\| = K + 1$, but x_0, x_1, \ldots, x_K are linearly independent. Then there exists $\{t_i\}_{i=0}^K$, with $0 < t_i < 1, \sum_{i=0}^K t_i = 1$, and $\|\sum_{i=0}^K t_i x_i\| < 1$. Considering Proposition 2.1 we have

$$1 = \sum_{i=0}^{K} t_i \|x_i\| \le \|\sum_{i=0}^{K} t_i x_i\| + (K+1-\|\sum_{i=0}^{K} x_i\|) \max_{0 \le i \le K} \|t_i x_i\|,$$

that is $\|\sum_{i=0}^{K} t_i x_i\| \ge 1$, contradiction.

Theorem 2.3. Let $\psi \in \Psi_{K+1}$. Assume that ψ has a minimal point $s_0 = (t_1, t_2, \ldots, t_K)$, and $0 < t_i < 1$, $i = 1, 2, \ldots, K$ and $0 < \sum_{i=1}^K t_i < 1$. Then a Banach space X is K strictly convex if and only if for any $x_0, x_1, \ldots, x_K \in X$, with x_0, x_1, \ldots, x_K linearly independent, we have

$$||t_0x_0 + t_1x_1 + \dots + t_Kx_K|| < \frac{1}{\psi(s_0)} ||(t_0x_0, t_1x_1, \dots, t_Kx_K)||_{\psi},$$

where $\sum_{i=0}^{K} t_i = 1$.

Proof. Assume that X is K strictly convex. Since $\psi(s) \geq \psi(s_0)$ for all $s \in \Delta_{K+1}$, and $t_0 x_0, t_1 x_1, \ldots, t_K x_K$ are linearly independent, then we have

$$\begin{aligned} \|t_0 x_0 + t_1 x_1 + \dots + t_K x_K\| \\ < \|t_0 x_0\| + \|t_1 x_1\| + \dots + \|t_K x_K\| \\ = \|(t_0 x_0, t_1 x_1, \dots, t_K x_K)\|_1 \\ \le \max_{s \in \Delta_{K+1}} \frac{\psi_1(s)}{\psi(s)} \|(t_0 x_0, t_1 x_1, \dots, t_K x_K)\|_{\psi} \\ = \frac{1}{\min_{s \in \Delta_{K+1}} \psi(s)} \|(t_0 x_0, t_1 x_1, \dots, t_K x_K)\|_{\psi} \\ = \frac{1}{\psi(s_0)} \|(t_0 x_0, t_1 x_1, \dots, t_K x_K)\|_{\psi}. \end{aligned}$$

Conversely for any $x_i \in S_X$, i = 0, 1, ..., K with $x_0, x_1, ..., x_K$ linearly independent. We have

$$\|t_0 x_0 + t_1 x_1 + \dots + t_K x_K\|$$

< $\frac{1}{\psi(s_0)} \|(t_0 x_0, t_1 x_1, \dots, t_K x_K)\|_{\psi}$
= $\frac{1}{\psi(s_0)} \|(t_0, t_1, \dots, t_K)\|_{\psi}$

$$= \frac{1}{\psi(s_0)} \| (1 - \sum_{i=1}^{K} t_i, t_1, \dots, t_K) \|_{\psi} = 1.$$

Corollary 2.4. Let $\psi \in \Psi_2$. Assume that ψ has a minimal point t_0 . Then a Banach space X is strictly convex if and only if, for each $x, y \in X$ with x, y linearly independent we have

$$\|(1-t_0)x+t_0y\| < \frac{1}{\psi(t_0)}\|((1-t_0)x,t_0y)\|_{\psi}$$

Corollary 2.5. If $\psi = \psi_p \in \Psi_{K+1}$, when $1 , <math>\psi_p(t_1, t_2, \ldots, t_K) = ((1 - \sum_{i=1}^{K} t_i)^p + t_1^p + \cdots + t_K^p)^{\frac{1}{p}}$. Note that for any $s \neq (\frac{1}{K+1}, \ldots, \frac{1}{K+1})$, $s \in \Delta_{K+1}$, $\psi_p(s) > \psi_p(\frac{1}{K+1}, \ldots, \frac{1}{K+1}) = (K+1)^{\frac{1}{p}-1}$. Then a Banach space X is K strictly convex if and only if for any $x_0, x_1, \ldots, x_K \in X$ with x_0, x_1, \ldots, x_K linearly independent, we have

$$\left\|\frac{x_0 + x_1 + \dots + x_K}{K+1}\right\|^p < \frac{\|x_0\|^p + \dots + \|x_K\|^p}{K+1}$$

Theorem 2.3 does not require that ψ is strictly convex. This should be contrasted with the result of [6], i.e., $(X_1 \bigoplus X_2 \bigoplus \cdots \bigoplus X_n)_{\psi}$ is strictly convex if and only if X_1, X_2, \ldots, X_n are strictly convex respectively and ψ is a strictly convex function on Δ_n . Thus, let $\|\cdot\| = \max\{\|\cdot\|_2, \lambda\|\cdot\|_1\} (\frac{1}{\sqrt{K+1}} < \lambda < 1)$. Let ψ be the corresponding convex function of $\|\cdot\|$. Then for any $s = (s_1, \ldots, s_K) \in \Delta_{K+1}$,

$$\psi(s) = \|(1 - \sum_{i=1}^{K} s_i, s_1, \dots, s_K)\|$$

= $\max\left\{\|(1 - \sum_{i=1}^{K} s_i, s_1, \dots, s_K)\|_2, \lambda\|(1 - \sum_{i=1}^{K} s_i, s_1, \dots, s_K)\|_1\right\}$
= $\max\{\psi_2(s), \lambda\}.$

Since $\min_{s \in \Delta_{K+1}} \psi_2(s) = \frac{1}{\sqrt{K+1}}$. Then

$$\psi(s) = \begin{cases} \lambda, \ \frac{1}{\sqrt{K+1}} \le \psi_2(s) \le \lambda \\ \psi_2(s), \ \lambda < \psi_2(s) \le 1. \end{cases}$$

For $\psi_2(s)$ is continuous on Δ_{K+1} , we have $\min_{s \in \Delta_{K+1}} \psi(s) = \lambda$ and ψ is not strictly convex on Δ_{K+1} . Applying Theorem 2.3, we can give the following characterization using ψ above.

Corollary 2.6. Let $\frac{1}{\sqrt{K+1}} < \lambda \leq 1$. Then a Banach space X is K strictly convex if and only if for any $x_0, x_1, \ldots, x_K \in X$, with x_0, x_1, \ldots, x_K linearly independent, we have

$$\left\|\frac{x_0+x_1+\cdots+x_K}{K+1}\right\|$$

$$< \frac{1}{\lambda} \max\left\{\frac{(\|x_0\|^2 + \dots + \|x_K\|^2)^{\frac{1}{2}}}{K+1}, \lambda \frac{\|x_0\| + \dots + \|x_K\|}{K+1}\right\}$$
$$= \max\left\{\frac{(\|x_0\|^2 + \dots + \|x_K\|^2)^{\frac{1}{2}}}{\lambda(K+1)}, \frac{\|x_0\| + \dots + \|x_K\|}{K+1}\right\}.$$

3. K uniform convexity

We say that a Banach space X is K uniformly convex (or K uniformly rotund see [15]) if for any $\varepsilon > 0$, there exists some $\delta = \delta(\varepsilon) > 0$, such that whenever $x_0, x_1, ..., x_K \in S_X$ and $||x_0 + x_1 + \dots + x_K|| > (K+1) - \delta$, we have

$$A(x_0, x_1, \dots, x_K) = \sup \left\{ \begin{vmatrix} 1 & 1 & \cdots & 1 \\ f_1(x_0) & f_1(x_1) & \cdots & f_1(x_K) \\ \cdots & \cdots & \cdots & \cdots \\ f_K(x_0) & f_K(x_1) & \cdots & f_K(x_K) \end{vmatrix}, \{f_i\}_{i=1}^K \subset B_{X^*} \right\} < \varepsilon.$$

In the case of K = 1, X is uniformly convex.

Proposition 3.1 (cf. [17]). Let X be a Banach space. Then X is K uniformly convex if and only if for any K + 1 sequences $\{x_0^n\}, \{x_1^n\}, \ldots, \{x_K^n\}$ in X, if $||x_i^n|| \to a, n \to \infty, i = 0, 1, 2, \dots, K \text{ and } ||x_0^n + x_1^n + \dots + x_K^n|| \to (K+1)a,$ then

$$\lim_{n \to \infty} A(x_0^n, x_1^n, \dots, x_K^n) = 0.$$

Proposition 3.2 (cf. [9]). Let $\{x_1^k\}_k, \{x_2^k\}_k, \ldots, \{x_n^k\}_k$ be n sequences in a Banach space X for which the sequences of their norms are convergent. Then the following are equivalent.

- (1) $\lim_{k \to \infty} \|\sum_{j=1}^{n} x_{j}^{k}\| = \lim_{k \to \infty} \sum_{j=1}^{n} \|x_{j}^{k}\|.$ (2) $\lim_{k \to \infty} \|\alpha x_{1}^{k} + \sum_{j=2}^{n} x_{j}^{k}\| = \lim_{k \to \infty} (\alpha \|x_{1}^{k}\| + \sum_{j=2}^{n} \|x_{j}^{k}\|) \text{ for all } \alpha > 0.$ (3) $\lim_{k \to \infty} \|\alpha x_{1}^{k} + \sum_{j=2}^{n} x_{j}^{k}\| = \lim_{k \to \infty} (\alpha \|x_{1}^{k}\| + \sum_{j=2}^{n} \|x_{j}^{k}\|) \text{ for some } \alpha > 0.$

Proposition 3.3 (cf. [13]). Let $\psi \in \Psi_n$ and let $x = (x_1, x_2, \dots, x_n), y =$ $(y_1, y_2, \ldots, y_n) \in \mathbb{C}^n$. Then

(1) If $|x| \leq |y|$, then $||x||_{\psi} \leq ||y||_{\psi}$.

(2) If ψ is strictly convex and |x| < |y|, then $||x||_{\psi} < ||y||_{\psi}$.

For $x = (x_1, x_2, ..., x_n) \in \mathbb{C}^n$, denote |x| by $|x| = (|x_1|, |x_2|, ..., |x_n|)$. We say that $|x| \leq |y|$ if $|x_j| \leq |y_j|$ for $1 \leq j \leq n$. Further, we say that |x| < |y| if $|x| \leq |y|$ and $|x_j| < |y_j|$ for some j.

Theorem 3.4. Let $\psi \in \Psi_{K+1}$. Assume that ψ has a unique minimal point $s_0 = (t_1, t_2, \dots, t_K)$, with $0 < t_i < 1$, $\sum_{i=1}^K t_i < 1$. Then a Banach space X is K uniformly convex if and only if for any $\varepsilon > 0$, there exists some $\delta > 0$, such that for any $x_0, x_1, \ldots, x_K \in B_X$, satisfying

$$||t_0x_0 + t_1x_1 + \dots + t_Kx_K|| > (1 - \delta)\frac{1}{\psi(s_0)}||(t_0x_0, t_1x_1, \dots, t_Kx_K)||_{\psi},$$

where $\sum_{i=0}^{K} t_i = 1$, then we have $A(x_0, x_1, \dots, x_K) < \varepsilon$.

Proof. Let X be a K uniformly convex Banach space. Assume that there exists $\varepsilon_0 > 0$, for any $n \in \mathbb{N}$, there are sequences $\{x_0^n\}, \{x_1^n\}, \dots, \{x_K^n\}$ in B_X satisfying

(3)
$$||t_0x_0^n + t_1x_1^n + \dots + t_Kx_K^n|| > (1 - \frac{1}{n})\frac{1}{\psi(s_0)}||(t_0x_0^n, t_1x_1^n, \dots, t_Kx_K^n)||_{\psi}.$$

But $A(x_0^n, x_1^n, \ldots, x_K^n) \ge \varepsilon_0$.

Since $\{\|x_i^n\|\}_{n=1}^{\infty}$, i = 0, 1, ..., K and $\{\|\sum_{i=0}^{K} t_i x_i^n\|\}_{n=1}^{\infty}$ are bounded sequences, without loss of generality we can let $\|x_i^n\| \to a_i \ (n \to \infty), i = 0, 1, ..., K$ and $\|t_0 x_0^n + t_1 x_1^n + \dots + t_K x_K^n\| \to b \ (n \to \infty)$. Moreover, we can choose $\{\|x_i^n\|\}_{n=1}^{\infty}$ such that $\max\{\|x_i^n\|, 0 \le i \le K\} = 1$. Thus $\max\{a_i, 0 \le i \le K\} = 1$. From this, $\sum_{i=0}^{K} t_i a_i > 0$. It is clear that $0 \le a_i \le 1, 0 \le b \le 1$. Considering the equality (2), we have

$$(1 - \frac{1}{n})\frac{1}{\psi(s_0)} \| (t_0 x_0^n, t_1 x_1^n, \dots, t_K x_K^n) \|_{\psi}$$

= $(1 - \frac{1}{n})\frac{1}{\psi(s_0)} \| (t_0 \| x_0^n \|, t_1 \| x_1^n \|, \dots, t_K \| x_K^n \|) \|_{\psi}$
< $\| t_0 x_0^n + t_1 x_1^n + \dots + t_K x_K^n \|$
 $\leq t_0 \| x_0^n \| + t_1 \| x_1^n \| + \dots + t_K \| x_K^n \|.$

Let $n \to \infty$. Then $\frac{1}{\psi(s_0)} \| (t_0 a_0, t_1 a_1, \dots, t_K a_K) \|_{\psi} \le t_0 a_0 + t_1 a_1 + \dots + t_K a_K$ holds. Hence

$$\psi\left(\frac{t_1a_1}{\sum_{i=0}^{K} t_ia_i}, \dots, \frac{t_Ka_K}{\sum_{i=0}^{K} t_ia_i}\right) \le \psi(s_0) = \psi(t_1, t_2, \dots, t_K)$$

From the uniqueness of s_0 , we get $a_0 = a_1 = \cdots = a_K$. Let us denote them as a. Moreover,

$$\lim_{n \to \infty} \|\sum_{i=0}^{K} t_i x_i^n\| = \lim_{n \to \infty} \sum_{i=0}^{K} \|t_i x_i^n\|.$$

Using Proposition 3.2 we get

$$\lim_{n \to \infty} \left\| \frac{1}{t_0} t_0 x_0^n + \sum_{i=1}^K t_i x_i^n \right\| = \lim_{n \to \infty} (\|x_0^n\| + \sum_{i=1}^K \|t_i x_i^n\|).$$

Repeat the similar process above for K + 1 times, we have

$$\lim_{n \to \infty} \|\sum_{i=0}^{K} x_i^n\| = \lim_{n \to \infty} \sum_{i=0}^{K} \|x_i^n\| = (K+1)a.$$

Hence there is $\lim_{n\to\infty} A(x_0^n, x_1^n, \dots, x_K^n) = 0$. By Proposition 3.1, it is a contradiction.

Conversely, for any $\varepsilon > 0$ there exists some $\delta > 0$, such that for any x_0, x_1, \ldots, x_K in S_X with $A(x_0, x_1, \ldots, x_K) \ge \varepsilon$, we have

$$\|t_0 x_0 + t_1 x_1 + \dots + t_K x_K\|$$

$$\leq (1 - \delta) \frac{1}{\psi(s_0)} \|(t_0 x_0, t_1 x_1, \dots, t_K x_K)\|_{\psi}$$

$$\leq (1 - \delta) \frac{1}{\psi(s_0)} \|(t_0, t_1, \dots, t_K)\|_{\psi} = 1 - \delta.$$

By Proposition 2.1 we have

$$1 = \sum_{i=0}^{K} t_i \|x_i\| \le (K+1-\|\sum_{i=0}^{K} x_i\|) \max_{0 \le i \le K} t_i \|x_i\| + \|\sum_{i=0}^{K} t_i x_i\| \le (K+1-\|\sum_{i=0}^{K} x_i\|) + 1 - \delta.$$

Hence $\|\sum_{i=0}^{K} x_i\| \le (K+1) - \delta.$

Corollary 3.5 (cf. [11]). Let $\psi \in \Psi_2$. Assume that ψ has a unique minimal point t_0 . Then a Banach space X is uniformly convex if and only if, for every $\varepsilon > 0$, there exists some $\delta > 0$ such that $||x - y|| \ge \varepsilon, x, y \in B_X$ implies

$$\|(1-t_0)x+t_0y\| \le (1-\delta)\frac{1}{\psi(t_0)}\|((1-t_0)x,t_0y)\|_{\psi}.$$

Corollary 3.6. Let $\psi(s) = \psi_p(s) = [(1 - \sum_{i=1}^K s_i)^p + s_1^p + \dots + s_K^p]^{\frac{1}{p}}, 1 .$ $Then <math>\psi_p(s)$ has a unique minimal point $s_0 = (\frac{1}{K+1}, \frac{1}{K+1}, \dots, \frac{1}{K+1})$. A Banach space X is K uniformly convex if and only if for every $\varepsilon > 0$, there exists some $\delta > 0$ such that for any x_0, x_1, \dots, x_K in B_X satisfying

$$\left\|\frac{x_0 + x_1 + \dots + x_K}{K+1}\right\|^p > (1-\delta)\frac{\|x_0\|^p + \dots + \|x_K\|^p}{K+1}$$

implies $A(x_0, x_1, \ldots, x_K) < \varepsilon$.

4. Uniform non- l_1^N -ness

A Banach space X is said to be uniformly non- l_1^N (cf. [1, 10]) provided there exists $\delta(0 < \delta < 1)$ such that for any $x_0, x_1, \ldots, x_{N-1}$ in S_X , there exists an N-tuple of signs $\theta = (\theta_j)$ for which

$$\|\sum_{j=0}^{N-1}\theta_j x_j\| \le N(1-\delta).$$

In the case of N = 2, X is called uniform non-squareness. As is well known, we may take $x_0, x_1, \ldots, x_{N-1}$ from B_X in the definition (see [8]).

Lemma 4.1. A Banach space X is uniformly non- l_1^N if and only if there exist some $s = (s_0, s_1, \ldots, s_{N-1})$, with $\sum_{i=0}^{N-1} s_i = 1, 0 < s_i < 1, i = 0, 1, \ldots, N-1$, and some $\delta(0 < \delta < 1)$, such that for any $x_0, x_1, \ldots, x_{N-1}$ in B_X , there exists an N-tuple of signs $\theta = (\theta_j)$, for which $\|\sum_{j=0}^{N-1} \theta_j s_j x_j\| \le 1 - \delta$.

Proof. Assume that X is uniformly non- l_1^N . Let $s_i = \frac{1}{N}$, i = 0, 1, ..., N - 1. For any $x_0, x_1, ..., x_{N-1}$ in S_X , there exists an N-tuple of signs $\theta = (\theta_j)$ and $s = (s_0, ..., s_{N-1})$ with $\sum_{i=0}^{N-1} s_i = 1$, $\|\sum_{j=0}^{N-1} \theta_j s_j x_j\| \le 1 - \delta$. Use Proposition 2.1 we have

$$1 = \sum_{j=0}^{N-1} \|\theta_j s_j x_j\|$$

$$\leq \|\sum_{j=0}^{N-1} \theta_j s_j x_j\| + (N - \|\sum_{j=0}^{N-1} \theta_j x_j\|) \max_{0 \le i \le N-1} \|\theta_j s_j x_j\|$$

$$\leq 1 - \delta + N - \|\sum_{j=0}^{N-1} \theta_j x_j\|.$$

Let $\delta' = \frac{\delta}{N}$. Then for any x_0, x_1, \dots, x_{N-1} in S_X , there exists an N-tuple of signs $\theta = (\theta_j)$, for which $\|\sum_{j=0}^{N-1} \theta_j x_j\| \leq N(1-\delta')$.

Lemma 4.2. Let X be a Banach space. Then X is uniformly non- l_1^N if and only if for any N sequences $\{x_0^n\}, \ldots, \{x_{N-1}^n\}$ in X and $||x_j^n|| \to a(a > 0), n \to \infty, j = 0, 1, \ldots, N-1, ||\sum_{j=0}^{N-1} \theta_j x_j^n|| \to A_\theta$ for any $\theta = (\theta_j)$, then there exists an N-tuple of signs $\theta = (\theta_j)$ for which

$$\lim_{n \to \infty} \left\| \sum_{j=0}^{N-1} \theta_j x_j^n \right\| < Na.$$

Proof. It is equivalent to prove that: X is not uniformly non- l_1^N if and only if there exist N sequences $\{x_0^n\}, \ldots, \{x_{N-1}^n\}$ in X and $||x_j^n|| \to a(a > 0), n \to \infty, j = 0, 1, \ldots, N-1$, for any N-tuple of signs $\theta = (\theta_j)$ there holds

$$\lim_{n \to \infty} \left\| \sum_{j=0}^{N-1} \theta_j x_j^n \right\| = Na.$$

Without loss of generality, let a = 1. On one hand, since $||x_j^n|| \to 1, j = 0, 1, \ldots, N-1$, we can assume that $||x_j^n|| > 0$, then $\left\{\frac{x_j^n}{||x_j^n||}\right\} \subseteq S_X$. In addition, we have

$$\left\| \left\| \sum_{j=0}^{N-1} \theta_j \frac{x_j^n}{\|x_j^n\|} \right\| - \left\| \sum_{j=0}^{N-1} \theta_j x_j^n \right\| \right\|$$

$$\leq \left\| \sum_{j=0}^{N-1} \theta_j \left(\frac{x_j^n}{\|x_j^n\|} - x_j^n \right) \right\| \leq \sum_{j=0}^{N-1} \left\| \frac{x_j^n}{\|x_j^n\|} - x_j^n \right\|$$
$$= \left| \sum_{j=0}^{N-1} \left| \frac{1}{\|x_j^n\|} - 1 \right| \cdot \|x_j^n\| \to 0 \ (n \to \infty).$$

Hence

$$\lim_{n \to \infty} \left\| \sum_{j=0}^{N-1} \theta_j \frac{x_j^n}{\|x_j^n\|} \right\| = \lim_{n \to \infty} \left\| \sum_{j=0}^{N-1} \theta_j x_j^n \right\| = N.$$

By definition X is not uniformly non- l_1^N .

The converse is obvious from the definition of uniform non- l_1^N -ness.

Theorem 4.3. Let $\psi \in \Psi_N$. Assume that ψ has a unique minimal point $s = (s_1, s_2, \ldots, s_{N-1})$ with $\sum_{i=1}^{N-1} s_i < 1, 0 < s_i < 1, i = 1, 2, \ldots, N-1$. Then a Banach space X is uniformly non- l_1^N if and only if there exists $\delta(0 < \delta < 1)$ such that for any $x_0, x_1, \ldots, x_{N-1}$ in B_X , there exists an N-tuple of signs $\theta = (\theta_i)$, for which

$$\left\|\sum_{j=0}^{N-1} s_j \theta_j x_j\right\| \le (1-\delta) \frac{1}{\psi(s)} \left\| (s_0 x_0, s_1 x_1, \dots, s_{N-1} x_{N-1}) \right\|_{\psi},$$

where $s_0 = 1 - \sum_{i=1}^{N-1} s_j$.

Proof. Let X be a uniformly non- l_1^N Banach space. Assume that the conclusion fails to hold. Then for $\delta_n = \frac{1}{n}, n \in \mathbb{N}$, there exist sequences $\{x_j^n\}$ in B_X , $j = 0, 1, \ldots, N-1$, for any N-tuple of signs $\theta = (\theta_j)$, we have

$$\left\| \sum_{j=0}^{N-1} s_j \theta_j x_j^n \right\|$$

> $(1 - \frac{1}{n}) \frac{1}{\psi(s)} \left\| (s_0 x_0^n, s_1 x_1^n, \dots, s_{N-1} x_{N-1}^n) \right\|_{\psi}$
(4) $= (1 - \frac{1}{n}) \frac{1}{\psi(s)} \left\| (s_0 \| x_0^n \|, s_1 \| x_1^n \|, \dots, s_{N-1} \| x_{N-1}^n \|) \right\|_{\psi} .$

Because $\{\|x_j^n\|\}_{n=1}^{\infty}$, j = 0, 1, ..., N-1 are bounded sequences, we just let $\|x_j^n\| \to a_j(n \to \infty)$, j = 0, 1, ..., N-1. Without loss of generality, we can choose $\{\|x_j^n\|\}_{n=1}^{\infty}$ such that $\max\{\|x_j^n\|, 0 \le j \le N-1\} = 1$. As a_j is the limit of $\{\|x_j^n\|\}_{n=1}^{\infty}$, we get $\max\{a_j, 0 \le j \le N-1\} = 1$. Thus $\sum_{j=0}^{N-1} s_j a_j > 0$. In (4) let $n \to \infty$, then there is

$$\frac{1}{\psi(s)} \| (s_0 a_0, s_1 a_1, \dots, s_{N-1} a_{N-1}) \|_{\psi} \le \sum_{j=0}^{N-1} s_j a_j.$$

From this we get

$$\psi\left(\frac{s_1a_1}{\sum_{j=0}^{N-1} s_ja_j}, \dots, \frac{s_{N-1}a_{N-1}}{\sum_{j=0}^{N-1} s_ja_j}\right) \le \psi(s_1, \dots, s_{N-1}).$$

By the uniqueness of $s = (s_1, s_2, \ldots, s_{N-1})$, we get $a_0 = a_1 = \cdots = a_{N-1}$, denote them as a. In addition, from (4) we get $\lim_{n\to\infty} \left\|\sum_{j=0}^{N-1} s_j \theta_j x_j^n\right\| = 1 = \lim_{n\to\infty} \sum_{j=0}^{N-1} \left\|s_j \theta_j x_j^n\right\|$. Using Proposition 3.2 there holds

$$\lim_{n \to \infty} \left\| \sum_{j=0}^{N-1} \theta_j x_j^n \right\| = \lim_{n \to \infty} \sum_{j=0}^{N-1} \|\theta_j x_j^n\| = Na.$$

It's a contradiction by Lemma 4.2.

...

...

On the other hand, for any $x_0, x_1, \ldots, x_{N-1}$ in B_X

$$\left\| \sum_{j=0}^{N-1} s_j \theta_j x_j \right\| \le (1-\delta) \frac{1}{\psi(s)} \left\| (s_0 x_0, s_1 x_1, \dots, s_{N-1} x_{N-1}) \right\|_{\psi}$$
$$\le (1-\delta) \frac{1}{\psi(s)} \left\| (s_0, s_1, \dots, s_{N-1}) \right\|_{\psi}$$
$$= 1-\delta.$$

We claim that X is uniformly non- l_1^N by Lemma 4.1.

Corollary 4.4. Let $\psi \in \Psi_2$. Assume that ψ has the unique minimum at $t = t_0(0 < t_0 < 1)$. Then a Banach space X is uniformly non-square if and only if there exists some $\delta(0 < \delta < 1)$ such that for any $x, y \in B_X$ implies

$$\min\left\{\|(1-t_0)x+t_0y\|,\|(1-t_0)x-t_0y\|\right\} \le (1-\delta)\frac{1}{\psi(t_0)}\|((1-t_0)x,t_0y)\|_{\psi}.$$

Corollary 4.5. A Banach space X is uniformly non- l_1^N if and only if there exists some $\delta(0 < \delta < 1)$ such that for any $x_0, x_1, \ldots, x_{N-1}$ in B_X , there exists an N-tuple of signs $\theta = (\theta_j)$ for which

$$\left\|\frac{\sum_{j=0}^{N-1} \theta_j x_j}{N}\right\|^p \le (1-\delta) \frac{\|x_0\|^p + \dots + \|x_{N-1}\|^p}{N}$$

where 1 .

Proof. We only need to let
$$\psi(t) = \psi_p(t) = \left[(1 - \sum_{i=1}^{N-1} t_i)^p + t_1^p + \dots + t_{N-1}^p \right]^{\frac{1}{p}}$$
 in Theorem 4.3.

Acknowledgment. The authors thank the anonymous referees for the constructive comments and suggestions. Especially, thanks for bringing forward Keni-Ichi Mitani and Kichi-Suke Saito's research results.

428

References

- [1] B. Beauzamy, Introduction to Banach Spaces and Their Geometry, 2nd ed., North Holland, 1985.
- [2] F. F. Bonsall and J. Duncan, Numerical Ranges. II, London Mathematical Society Lecture Notes Series, No. 10. Cambridge University Press, New York-London, 1973.
- [3] S. Dhompongsa, A. Kaewcharoen, and A. Kaewkhao, Fixed point property of direct sums, Nonlinear Anal. 63 (2005), 2177–2188.
- [4] S. Dhompongsa, A. Kaewkhao, and S. Saejung, Uniform smoothness and U-convexity of ψ-direct sums, J. Nonlinear Convex Anal. 6 (2005), no. 2, 327–338.
- [5] P. N. Dowling and B. Turett, Complex strict convexity of absolute norms on Cⁿ and direct sums of Banach spaces, J. Math. Anal. Appl. **323** (2006), no. 2, 930–937.
- [6] M. Kato, K.-S. Saito, and T. Tamura, On ψ-direct sums of Banach spaces and convexity, J. Aust. Math. Soc. 75 (2003), no. 3, 413–422.
- [7] _____, Uniform non-squareness of ψ -direct sums of Banach spaces $X \bigoplus_{\psi} Y$, Math. Inequal. Appl. 7 (2004), no. 3, 429–437.
- [8] _____, Sharp triangle inequality and its reverse in Banach spaces, Math. Inequal. Appl. 10 (2007), no. 2, 451–460.
- [9] _____, Uniform non-l₁ⁿ-ness of \u03c6-direct sums of Banach spaces, J. Nonlinear Convex Anal. 11 (2010), no. 1, 13–33.
- [10] R. E. Megginson, An Introduction to Banach Spaces Theory, Springer, 1998.
- [11] K.-I. Mitani and K.-S. Saito, A note on geometrical properties of Banach spaces using ψ-direct sums, J. Math. Anal. Appl. 327 (2007), no. 2, 898–907.
- [12] K.-S. Saito and M. Kato, Uniform convexity of ψ -direct sums of Banach spaces, J. Math. Anal. Appl. **277** (2003), no. 1, 1–11.
- [13] K.-S. Saito, M. Kato, and Y. Takahashi, Absolute norms on \mathbb{C}^n , J. Math. Anal. Appl. **252** (2000), no. 2, 879–905.
- [14] I. Singer, On the set of best approximation of an element in a normed linear space, Rev. Math. Pures Appl. 5 (1960), 383–402.
- [15] F. Sullivan, A generalization of uniformly rotund Banach spaces, Can. J. Math. 31 (1979), no. 3, 628–636.
- [16] Y. Takahashi, M. Kato, and K.-S. Saito, Strict convexity of absolute norms on C² and direct sums of Banach spaces, J. Inequal. Appl. 7 (2002), no. 2, 179–186.
- [17] X. T. Yu, E. B. Zang, and Z. Liu, On KUR Banach spaces, J. East China Normal Univ. Nature Science Edition. 1 (1981), 1–8.

Zhihua Zhang

SCHOOL OF MATHEMATICAL SCIENCES UNIVERSITY OF ELECTRONIC SCIENCE AND TECHNOLOGY OF CHINA CHENGDU 611731, SICHUAN PROVINCE, P. R. CHINA *E-mail address*: zhihuamath@yahoo.cn

Lan Shu

SCHOOL OF MATHEMATICAL SCIENCES UNIVERSITY OF ELECTRONIC SCIENCE AND TECHNOLOGY OF CHINA CHENGDU 611731, SICHUAN PROVINCE, P. R. CHINA *E-mail address:* shul@uestc.edu.cn

JUN ZHENG SCHOOL OF MATHEMATICS AND STATISTICS LANZHOU UNIVERSITY LANZHOU 730000, GANSU PROVINCE, P. R. CHINA *E-mail address:* zhengj_2010@lzu.edu.cn Yuling Yang School of Mathematical Sciences University of Electronic Science and Technology of China Chengdu 611731, Sichuan Province, P. R. China *E-mail address:* yulingkathy@sina.com