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CHARACTERIZATIONS OF GEOMETRICAL PROPERTIES

OF BANACH SPACES USING ψ-DIRECT SUMS

Zhihua Zhang, Lan Shu, Jun Zheng, and Yuling Yang

Abstract. Let X be a Banach space and ψ a continuous convex function
on ∆K+1 satisfying certain conditions. Let (X

⊕
X

⊕
· · ·

⊕
X)ψ be the

ψ-direct sum of X. In this paper, we characterize the K strict convexity,
K uniform convexity and uniform non-lN1 -ness of Banach spaces using
ψ-direct sums.

1. Introduction

A norm ‖ · ‖ on Cn is said to be absolute if

‖(x1, x2, . . . , xn)‖ = ‖(|x1|, |x2|, . . . , |xn|)‖ for any (x1, x2, . . . , xn) ∈ C
n

and normalized if

‖(1, 0, . . . , 0)‖ = ‖(0, 1, 0, . . . , 0)‖ = · · · = ‖(0, . . . , 0, 1)‖.

The lp-norms are such examples:

‖(x1, x2, . . . xn)‖p =

{

(|x1|
p + |x2|

p + · · ·+ |xn|
p)

1
p , 1 ≤ p <∞

max{|x1|, |x2|, . . . , |xn|}, p = ∞.

Let ANn be the family of all absolute normalized norms on C
n. When n =

2 Bonsall and Duncan [2] showed the following characterization of absolute
normalized norms on C2. Namely, the set AN2 of all absolute normalized
norms on C2 is in one-to-one correspondence with the set Ψ2 of all continuous
convex functions on [0, 1] satisfying ψ(0) = ψ(1) = 1 and max{1−t, t} ≤ ψ(t) ≤
1, 0 ≤ t ≤ 1. The correspondence is given by

(1) ψ(t) = ‖(1− t, t)‖, 0 ≤ t ≤ 1.
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Indeed, for any ψ ∈ Ψ2, define

‖(z, w)‖ψ =

{

(|z|+ |w|)ψ( |w|
|z|+|w|), (z, w) 6= (0, 0)

0, (z, w) = (0, 0).

By calculation we have ‖ · ‖ψ ∈ AN2 and ‖ · ‖ψ satisfies (1). From this result,
there are plenty of concrete absolute normalized norms of C2 which are not
lp-type.

In [13] K.-S. Saito, M. Kato and Y. Takahashi generalized the result to Cn.
Before stating it, we give some notations. For each n ∈ N with n ≥ 2, we put

∆n =







(t1, t2, t3, . . . , tn−1) ∈ R
n−1 : tj ≥ 0,

n−1
∑

j=1

tj ≤ 1







and define the set Ψn of all continuous convex functions on ∆n satisfying the
following conditions:

(A0) ψ(0, 0, . . . , 0) = ψ(1, 0, . . . , 0) = · · · = ψ(0, . . . , 0, 1),

(A1)

ψ(t1, t2, . . . , tn−1) ≥ (t1+ t2+ · · ·+ tn−1)ψ









t1
n−1
∑

i=1

ti

, . . . ,
tn−1

n−1
∑

i=1

ti









, if

n−1
∑

i=1

ti 6= 0,

(A2) ψ(t1, t2, . . . , tn−1) ≥ (1 − t1)ψ

(

0,
t2

1− t1
, . . . ,

tn−1

1− t1

)

, if t1 6= 1,

(A3) ψ(t1, t2, . . . , tn−1) ≥ (1 − t2)ψ

(

t1

1− t2
, 0, . . . ,

tn−1

1− t2

)

, if t2 6= 1,

...

(An)

ψ(t1, t2, . . . , tn−1) ≥ (1− tn−1)ψ

(

t1

1− tn−1
, . . . ,

tn−2

1− tn−1
, 0

)

, if tn−1 6= 1.

K.-S. Saito, M. Kato and Y. Takahashi in [13] showed that, for each n ∈ N

with n ≥ 2, ANn and Ψn are in one-to-one correspondence under the following
equation:

(2) ψ(t1, . . . , tn−1) =

∥

∥

∥

∥

∥

∥

(1−
n−1
∑

j=1

tj , t1, . . . , tn−1)

∥

∥

∥

∥

∥

∥

, (t1, . . . , tn−1) ∈ ∆n.
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Indeed, for any ψ ∈ Ψn, the norm ‖ · ‖ψ on Cn is defined as

‖(x0, x1, . . . , xn−1)‖ψ =























(

n−1
∑

i=0

|xi|

)

ψ





|x1|
n−1∑

i=0

|xi|
, . . . ,

|xn−1|
n−1∑

i=0

|xi|



 ,

(x0, x1, . . . , xn−1) 6= (0, . . . , 0)
0, (x0, x1, . . . , xn−1) = (0, . . . , 0).

Moreover, M. Kato, K.-S. Saito and Tamura in [6] introduced the ψ-direct
sums (X1

⊕

X2

⊕

· · ·
⊕

Xn)ψ as follows. LetX1, X2, . . . , Xn be Banach spaces
and let ψ ∈ Ψn. Then the product space X1 ×X2 × · · · ×Xn with the norm

‖(x1, x2, . . . , xn)‖ψ = ‖(‖x1‖, ‖x2‖, . . . , ‖xn‖)‖ψ, xi ∈ Xi, 1 ≤ i ≤ n,

is a Banach space which is denoted by (X1

⊕

X2

⊕

· · ·
⊕

Xn)ψ . They showed
that (X1

⊕

X2

⊕

· · ·
⊕

Xn)ψ is strictly convex (uniformly convex) if and only
if X1, X2, . . . , Xn is strictly convex (uniformly convex) and ψ ∈ Ψn is strictly
convex. In [7] the authors presented that X

⊕

ψ Y is uniformly non-square
if and only if X and Y are uniformly non-square and ψ 6= ψ1, ψ∞. Since
the introduction of ψ-direct sums of Banach spaces, it has attracted plenty of
attention and been treated by several authors (cf. [3, 4, 5, 12, 16]).

In particular, K.-I. Mitani and K.-S. Saito in [11] characterized the strict
convexity, uniform convexity and uniform non-squareness of Banach spaces
using ψ-direct sums X

⊕

ψX . They showed that, if t0 is a unique minimal
point, a Banach space X is strictly convex if and only if, for each x, y ∈ X with
x 6= y, then

‖(1− t0)x+ t0y‖ <
1

ψ(t0)
‖((1− t0)x, t0y)‖ψ, ψ ∈ Ψ2.

As for the cases of uniform convexity and uniform non-squareness, they gained
some similar results.

Our main purpose of this paper is to give the characterization of K strict
convexity, K uniform convexity and uniform non-lN1 -ness using ψ-direct sums
(X
⊕

X
⊕

· · ·
⊕

X)ψ, we first characterize the K strict convexity using ψ-
direct sums. We show that, if ψ has a minimal point s0 = (t1, t2, . . . , tK), and

0 < ti < 1, i = 1, 2, . . . ,K and 0 <
∑K

i=1 ti < 1, then a Banach space X is K
strictly convex if and only if for any x0, x1, . . . , xK ∈ X , with x0, x1, . . . , xK
linearly independent, we have

‖t0x0 + t1x1 + · · ·+ tKxK‖ <
1

ψ(s0)
‖(t0x0, t1x1, . . . , tKxK)‖ψ,

where
∑K
i=0 ti = 1. As a result, we can give different characterization by

choosing different ψ. In contrast with the result of K.-I. Mitani and K.-S. Saito
[11], the uniqueness of t0 is not required, but the linear independence of x and
y is necessary. Moreover when K = 1, we get the characterization of strict
convexity. In Section 3, we also characterize the K uniform convexity and
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make Theorem 8 in [11] as our Corollary 3.5. In Section 4, the characterization
of uniform non-lN1 -ness is gained by adding the uniqueness of minimal point.

2. K strict convexity

A Banach space X is said to be K strictly convex (cf. [14]) if and only if

for any K+1 elements x0, x1, . . . , xK in X , whenever ‖
∑K

i=0 xi‖ =
∑K

i=0 ‖xi‖,
then x0, x1, . . . , xK are linearly dependent.

The closed unit ball of a Banach space X is {x ∈ X : ‖x‖ ≤ 1} and is
denoted by BX , the unit sphere of X is {x ∈ X : ‖x‖ = 1} and is denoted by
SX . It is obvious that when K = 1, X is strictly convex.

Proposition 2.1 (cf. [8]). Let X be a Banach space. For all non-zero elements

x1, x2, . . . , xn ∈ X, the following inequality holds:

‖

n
∑

j=1

xj‖+



n− ‖

n
∑

j=1

xj

‖xj‖
‖



 min
1≤j≤n

‖xj‖ ≤

n
∑

j=1

‖xj‖

≤ ‖

n
∑

j=1

xj‖+



n− ‖

n
∑

j=1

xj

‖xj‖
‖



 max
1≤j≤n

‖xj‖.

Lemma 2.2. Let X be a Banach space. Then the following assertions are

equivalent.

(1) X is K strictly convex.

(2) For any x0, x1, . . . , xK ∈ SX , whenever ‖
∑K

i=0 xi‖ = K + 1, then

x0, x1, . . . , xK are linearly dependent.

(3) If x0, x1, . . . , xK ∈ SX and x0, x1, . . . , xK are linearly independent, then

for any {ti}
K
i=0 satisfying 0 < ti < 1,

∑K

i=0 ti = 1, there holds ‖
∑K

i=0 tixi‖ < 1.

(3
′

) If x0, x1, . . . , xK ∈ SX and x0, x1, . . . , xK are linearly independent, then

there exists {ti}
K
i=0 with 0 < ti < 1,

∑K

i=0 ti = 1, such that ‖
∑K

i=0 tixi‖ < 1.

Proof. (1) ⇒ (2) is obvious.

(2) ⇒ (1) Let any x0, x1, . . . , xK ∈ X\{0}, and ‖
∑K
i=0 xi‖ =

∑K
i=0 ‖xi‖.

By Proposition 2.1 we have ‖
∑K

i=0
xi

‖xi‖‖ = K + 1. Hence x0

‖x0‖ ,
x1

‖x1‖ , . . . ,
xK

‖xK‖
are linearly dependent, so do x0, x1, . . . , xK .

(2) ⇒ (3) Assume that the conclusion falls to hold. Then there exists {ti}
K
i=0

satisfying 0 < ti < 1,
∑K

i=0 ti = 1, but ‖
∑K

i=0 tixi‖ = 1. Using Proposition 2.1
we have

‖

K
∑

i=0

tixi‖+

(

K + 1− ‖

K
∑

i=0

xi

‖xi‖
‖

)

min
0≤i≤K

‖tixi‖ ≤

K
∑

i=0

ti‖xi‖

≤ ‖

K
∑

i=0

tixi‖+

(

K + 1− ‖

K
∑

i=0

xi

‖xi‖
‖

)

max
0≤i≤K

‖tixi‖.
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Hence ‖
∑K

i=0
xi

‖xi‖‖ = K + 1. So x0, x1, . . . , xK are linearly dependent. Con-

tradiction.
(3) ⇒ (2) Clearly.

(2) ⇒ (3
′

) We just need to let ti =
1

K+1 , i = 0, 1, . . . ,K.

(3
′

) ⇒ (2) If there are x0, x1, . . . , xK ∈ SX and satisfying ‖
∑K

i=0 xi‖ =
K + 1, but x0, x1, . . . , xK are linearly independent. Then there exists {ti}

K
i=0,

with 0 < ti < 1,
∑K
i=0 ti = 1, and ‖

∑K
i=0 tixi‖ < 1. Considering Proposition

2.1 we have

1 =

K
∑

i=0

ti‖xi‖ ≤ ‖

K
∑

i=0

tixi‖+ (K + 1− ‖

K
∑

i=0

xi‖) max
0≤i≤K

‖tixi‖,

that is ‖
∑K
i=0 tixi‖ ≥ 1, contradiction. �

Theorem 2.3. Let ψ ∈ ΨK+1. Assume that ψ has a minimal point s0 =

(t1, t2, . . . , tK), and 0 < ti < 1, i = 1, 2, . . . ,K and 0 <
∑K

i=1 ti < 1. Then a

Banach space X is K strictly convex if and only if for any x0, x1, . . . , xK ∈ X,

with x0, x1, . . . , xK linearly independent, we have

‖t0x0 + t1x1 + · · ·+ tKxK‖ <
1

ψ(s0)
‖(t0x0, t1x1, . . . , tKxK)‖ψ,

where
∑K

i=0 ti = 1.

Proof. Assume that X is K strictly convex. Since ψ(s) ≥ ψ(s0) for all s ∈
∆K+1, and t0x0, t1x1, . . . , tKxK are linearly independent, then we have

‖t0x0 + t1x1 + · · ·+ tKxK‖

< ‖t0x0‖+ ‖t1x1‖+ · · ·+ ‖tKxK‖

= ‖(t0x0, t1x1, . . . , tKxK)‖1

≤ max
s∈∆K+1

ψ1(s)

ψ(s)
‖(t0x0, t1x1, . . . , tKxK)‖ψ

=
1

min
s∈∆K+1

ψ(s)
‖(t0x0, t1x1, . . . , tKxK)‖ψ

=
1

ψ(s0)
‖(t0x0, t1x1, . . . , tKxK)‖ψ.

Conversely for any xi ∈ SX , i = 0, 1, . . . ,K with x0, x1, . . . , xK linearly inde-
pendent. We have

‖t0x0 + t1x1 + · · ·+ tKxK‖

<
1

ψ(s0)
‖(t0x0, t1x1, . . . , tKxK)‖ψ

=
1

ψ(s0)
‖(t0, t1, . . . , tK)‖ψ
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=
1

ψ(s0)
‖(1−

K
∑

i=1

ti, t1, . . . , tK)‖ψ = 1.
�

Corollary 2.4. Let ψ ∈ Ψ2. Assume that ψ has a minimal point t0. Then a

Banach space X is strictly convex if and only if, for each x, y ∈ X with x, y

linearly independent we have

‖(1− t0)x+ t0y‖ <
1

ψ(t0)
‖((1− t0)x, t0y)‖ψ.

Corollary 2.5. If ψ = ψp ∈ ΨK+1, when 1 < p <∞, ψp(t1, t2, . . . , tK) = ((1−
∑K

i=1 ti)
p+ t

p
1 + · · ·+ t

p
K)

1
p . Note that for any s 6= ( 1

K+1 , . . . ,
1

K+1 ), s ∈ ∆K+1,

ψp(s) > ψp(
1

K+1 , . . . ,
1

K+1 ) = (K + 1)
1
p
−1. Then a Banach space X is K

strictly convex if and only if for any x0, x1, . . . , xK ∈ X with x0, x1, . . . , xK
linearly independent, we have

‖
x0 + x1 + · · ·+ xK

K + 1
‖p <

‖x0‖
p + · · ·+ ‖xK‖p

K + 1
.

Theorem 2.3 does not require that ψ is strictly convex. This should be
contrasted with the result of [6], i.e., (X1

⊕

X2

⊕

· · ·
⊕

Xn)ψ is strictly convex
if and only if X1, X2, . . . , Xn are strictly convex respectively and ψ is a strictly
convex function on ∆n. Thus, let ‖·‖ = max{‖·‖2, λ‖·‖1} (

1√
K+1

< λ < 1). Let

ψ be the corresponding convex function of ‖·‖. Then for any s = (s1, . . . , sK) ∈
∆K+1,

ψ(s) = ‖(1−

K
∑

i=1

si, s1, . . . , sK)‖

= max

{

‖(1−

K
∑

i=1

si, s1, . . . , sK)‖2, λ‖(1−

K
∑

i=1

si, s1, . . . , sK)‖1

}

= max{ψ2(s), λ}.

Since mins∈∆K+1
ψ2(s) =

1√
K+1

. Then

ψ(s) =

{

λ, 1√
K+1

≤ ψ2(s) ≤ λ

ψ2(s), λ < ψ2(s) ≤ 1.

For ψ2(s) is continuous on ∆K+1, we have mins∈∆K+1
ψ(s) = λ and ψ is not

strictly convex on ∆K+1. Applying Theorem 2.3, we can give the following
characterization using ψ above.

Corollary 2.6. Let 1√
K+1

< λ ≤ 1. Then a Banach space X is K strictly

convex if and only if for any x0, x1, . . . , xK ∈ X, with x0, x1, . . . , xK linearly

independent, we have

‖
x0 + x1 + · · ·+ xK

K + 1
‖
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<
1

λ
max

{

(‖x0‖
2 + · · ·+ ‖xK‖2)

1
2

K + 1
, λ

‖x0‖+ · · ·+ ‖xK‖

K + 1

}

= max

{

(‖x0‖
2 + · · ·+ ‖xK‖2)

1
2

λ(K + 1)
,
‖x0‖+ · · ·+ ‖xK‖

K + 1

}

.

3. K uniform convexity

We say that a Banach space X is K uniformly convex (or K uniformly
rotund see [15]) if for any ε > 0, there exists some δ = δ(ε) > 0, such that
whenever x0, x1, . . . , xK ∈ SX and ‖x0+x1+ · · ·+xK‖ > (K+1)− δ, we have

A(x0, x1, . . . , xK)

≡ sup















∣

∣

∣

∣

∣

∣

∣

∣

1 1 · · · 1
f1(x0) f1(x1) · · · f1(xK)
· · · · · · · · · · · ·

fK(x0) fK(x1) · · · fK(xK)

∣

∣

∣

∣

∣

∣

∣

∣

, {fi}
K
i=1 ⊂ BX∗















< ε.

In the case of K = 1, X is uniformly convex.

Proposition 3.1 (cf. [17]). Let X be a Banach space. Then X is K uniformly

convex if and only if for any K + 1 sequences {xn0 }, {x
n
1}, . . . , {x

n
K} in X, if

‖xni ‖ → a, n → ∞, i = 0, 1, 2, . . . ,K and ‖xn0 + xn1 + · · · + xnK‖ → (K + 1)a,
then

lim
n→∞

A(xn0 , x
n
1 , . . . , x

n
K) = 0.

Proposition 3.2 (cf. [9]). Let {xk1}k, {x
k
2}k, . . . , {x

k
n}k be n sequences in a

Banach space X for which the sequences of their norms are convergent. Then

the following are equivalent.

(1) lim
k→∞

‖
∑n
j=1 x

k
j ‖ = lim

k→∞

∑n
j=1 ‖x

k
j ‖.

(2) lim
k→∞

‖αxk1 +
∑n

j=2 x
k
j ‖ = lim

k→∞
(α‖xk1‖+

∑n

j=2 ‖x
k
j ‖) for all α > 0.

(3) lim
k→∞

‖αxk1 +
∑n

j=2 x
k
j ‖ = lim

k→∞
(α‖xk1‖+

∑n

j=2 ‖x
k
j ‖) for some α > 0.

Proposition 3.3 (cf. [13]). Let ψ ∈ Ψn and let x = (x1, x2, . . . , xn), y =
(y1, y2, . . . , yn) ∈ C

n. Then

(1) If |x| ≤ |y|, then ‖x‖ψ ≤ ‖y‖ψ.
(2) If ψ is strictly convex and |x| < |y|, then ‖x‖ψ < ‖y‖ψ.

For x = (x1, x2, . . . , xn) ∈ Cn, denote |x| by |x| = (|x1|, |x2|, . . . , |xn|). We say

that |x| ≤ |y| if |xj | ≤ |yj | for 1 ≤ j ≤ n. Further, we say that |x| < |y| if
|x| ≤ |y| and |xj | < |yj | for some j.

Theorem 3.4. Let ψ ∈ ΨK+1. Assume that ψ has a unique minimal point

s0 = (t1, t2, . . . , tK), with 0 < ti < 1,
∑K

i=1 ti < 1. Then a Banach space X is

K uniformly convex if and only if for any ε > 0, there exists some δ > 0, such
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that for any x0, x1, . . . , xK ∈ BX , satisfying

‖t0x0 + t1x1 + · · ·+ tKxK‖ > (1− δ)
1

ψ(s0)
‖(t0x0, t1x1, . . . , tKxK)‖ψ,

where
∑K

i=0 ti = 1, then we have A(x0, x1, . . . , xK) < ε.

Proof. Let X be a K uniformly convex Banach space. Assume that there
exists ε0 > 0, for any n ∈ N, there are sequences {xn0}, {x

n
1}, . . . , {x

n
K} in BX

satisfying

(3) ‖t0x
n
0 + t1x

n
1 + · · ·+ tKx

n
K‖ > (1−

1

n
)

1

ψ(s0)
‖(t0x

n
0 , t1x

n
1 , . . . , tKx

n
K)‖ψ.

But A(xn0 , x
n
1 , . . . , x

n
K) ≥ ε0.

Since {‖xni ‖}
∞
n=1, i = 0, 1, . . . ,K and {‖

∑K
i=0 tix

n
i ‖}

∞
n=1 are bounded se-

quences, without loss of generality we can let ‖xni ‖ → ai (n → ∞), i =
0, 1, . . . ,K and ‖t0x

n
0 + t1x

n
1 + · · · + tKx

n
K‖ → b (n → ∞). Moreover, we can

choose {‖xni ‖}
∞
n=1 such that max{‖xni ‖, 0 ≤ i ≤ K} = 1. Thus max{ai, 0 ≤

i ≤ K} = 1. From this,
∑K

i=0 tiai > 0. It is clear that 0 ≤ ai ≤ 1, 0 ≤ b ≤ 1.
Considering the equality (2), we have

(1−
1

n
)

1

ψ(s0)
‖(t0x

n
0 , t1x

n
1 , . . . , tKx

n
K)‖ψ

= (1−
1

n
)

1

ψ(s0)
‖(t0‖x

n
0‖, t1‖x

n
1‖, . . . , tK‖xnK‖)‖ψ

< ‖t0x
n
0 + t1x

n
1 + · · ·+ tKx

n
K‖

≤ t0‖x
n
0 ‖+ t1‖x

n
1‖+ · · ·+ tK‖xnK‖.

Let n → ∞. Then 1
ψ(s0)

‖(t0a0, t1a1, . . . , tKaK)‖ψ ≤ t0a0 + t1a1 + · · · + tKaK

holds. Hence

ψ

(

t1a1
∑K

i=0 tiai
, . . . ,

tKaK
∑K

i=0 tiai

)

≤ ψ(s0) = ψ(t1, t2, . . . , tK).

From the uniqueness of s0, we get a0 = a1 = · · · = aK . Let us denote them as
a. Moreover,

lim
n→∞

‖
K
∑

i=0

tix
n
i ‖ = lim

n→∞

K
∑

i=0

‖tix
n
i ‖.

Using Proposition 3.2 we get

lim
n→∞

‖
1

t0
t0x

n
0 +

K
∑

i=1

tix
n
i ‖ = lim

n→∞
(‖xn0‖+

K
∑

i=1

‖tix
n
i ‖).

Repeat the similar process above for K + 1 times, we have

lim
n→∞

‖

K
∑

i=0

xni ‖ = lim
n→∞

K
∑

i=0

‖xni ‖ = (K + 1)a.
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Hence there is limn→∞ A(xn0 , x
n
1 , . . . , x

n
K) = 0. By Proposition 3.1, it is a con-

tradiction.
Conversely, for any ε > 0 there exists some δ > 0, such that for any

x0, x1, . . . , xK in SX with A(x0, x1, . . . , xK) ≥ ε, we have

‖t0x0 + t1x1 + · · ·+ tKxK‖

≤ (1− δ)
1

ψ(s0)
‖(t0x0, t1x1, . . . , tKxK)‖ψ

≤ (1− δ)
1

ψ(s0)
‖(t0, t1, . . . , tK)‖ψ = 1− δ.

By Proposition 2.1 we have

1 =

K
∑

i=0

ti‖xi‖ ≤ (K + 1− ‖

K
∑

i=0

xi‖) max
0≤i≤K

ti‖xi‖+ ‖

K
∑

i=0

tixi‖

≤ (K + 1− ‖

K
∑

i=0

xi‖) + 1− δ.

Hence ‖
∑K
i=0 xi‖ ≤ (K + 1)− δ. �

Corollary 3.5 (cf. [11]). Let ψ ∈ Ψ2. Assume that ψ has a unique minimal

point t0. Then a Banach space X is uniformly convex if and only if, for every

ε > 0, there exists some δ > 0 such that ‖x− y‖ ≥ ε, x, y ∈ BX implies

‖(1− t0)x + t0y‖ ≤ (1− δ)
1

ψ(t0)
‖((1− t0)x, t0y)‖ψ.

Corollary 3.6. Let ψ(s) = ψp(s) = [(1−
∑K

i=1 si)
p+sp1+· · ·+spK ]

1
p , 1 < p <∞.

Then ψp(s) has a unique minimal point s0 = ( 1
K+1 ,

1
K+1 , . . . ,

1
K+1 ). A Banach

space X is K uniformly convex if and only if for every ε > 0, there exists some

δ > 0 such that for any x0, x1, . . . , xK in BX satisfying

‖
x0 + x1 + · · ·+ xK

K + 1
‖p > (1− δ)

‖x0‖
p + · · ·+ ‖xK‖p

K + 1

implies A(x0, x1, . . . , xK) < ε.

4. Uniform non-lN
1
-ness

A Banach space X is said to be uniformly non-lN1 (cf. [1, 10]) provided there
exists δ(0 < δ < 1) such that for any x0, x1, . . . , xN−1 in SX , there exists an
N -tuple of signs θ = (θj) for which

‖
N−1
∑

j=0

θjxj‖ ≤ N(1− δ).

In the case of N = 2, X is called uniform non-squareness. As is well known,
we may take x0, x1, . . . , xN−1 from BX in the definition (see [8]).
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Lemma 4.1. A Banach space X is uniformly non-lN1 if and only if there exist

some s = (s0, s1, . . . , sN−1), with
∑N−1
i=0 si = 1, 0 < si < 1, i = 0, 1, . . . , N − 1,

and some δ(0 < δ < 1), such that for any x0, x1, . . . , xN−1 in BX , there exists

an N -tuple of signs θ = (θj), for which ‖
∑N−1
j=0 θjsjxj‖ ≤ 1− δ.

Proof. Assume that X is uniformly non-lN1 . Let si =
1
N
, i = 0, 1, . . . , N − 1.

For any x0, x1, . . . , xN−1 in SX , there exists an N -tuple of signs θ = (θj) and

s = (s0, . . . , sN−1) with
∑N−1
i=0 si = 1, ‖

∑N−1
j=0 θjsjxj‖ ≤ 1−δ. Use Proposition

2.1 we have

1 =
N−1
∑

j=0

‖θjsjxj‖

≤ ‖

N−1
∑

j=0

θjsjxj‖+ (N − ‖

N−1
∑

j=0

θjxj‖) max
0≤i≤N−1

‖θjsjxj‖

≤ 1− δ +N − ‖

N−1
∑

j=0

θjxj‖.

Let δ
′

= δ
N
. Then for any x0, x1, . . . , xN−1 in SX , there exists an N -tuple of

signs θ = (θj), for which ‖
∑N−1
j=0 θjxj‖ ≤ N(1− δ

′

). �

Lemma 4.2. Let X be a Banach space. Then X is uniformly non-lN1 if and

only if for any N sequences {xn0 }, . . . , {x
n
N−1} in X and ‖xnj ‖ → a(a > 0), n→

∞, j = 0, 1, . . . , N − 1, ‖
∑N−1
j=0 θjx

n
j ‖ → Aθ for any θ = (θj), then there exists

an N -tuple of signs θ = (θj) for which

lim
n→∞

∥

∥

∥

∥

∥

∥

N−1
∑

j=0

θjx
n
j

∥

∥

∥

∥

∥

∥

< Na.

Proof. It is equivalent to prove that: X is not uniformly non-lN1 if and only
if there exist N sequences {xn0}, . . . , {x

n
N−1} in X and ‖xnj ‖ → a(a > 0), n →

∞, j = 0, 1, . . . , N − 1, for any N -tuple of signs θ = (θj) there holds

lim
n→∞

∥

∥

∥

∥

∥

∥

N−1
∑

j=0

θjx
n
j

∥

∥

∥

∥

∥

∥

= Na.

Without loss of generality, let a = 1. On one hand, since ‖xnj ‖ → 1, j =

0, 1, . . . , N − 1, we can assume that ‖xnj ‖ > 0, then
{

xn
j

‖xn
j
‖

}

⊆ SX . In addition,

we have
∣

∣

∣

∣

∣

∣

‖
N−1
∑

j=0

θj
xnj

‖xnj ‖
‖ − ‖

N−1
∑

j=0

θjx
n
j ‖

∣

∣

∣

∣

∣

∣
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≤

∥

∥

∥

∥

∥

∥

N−1
∑

j=0

θj(
xnj

‖xnj ‖
− xnj )

∥

∥

∥

∥

∥

∥

≤

N−1
∑

j=0

∥

∥

∥

∥

∥

xnj

‖xnj ‖
− xnj

∥

∥

∥

∥

∥

=

N−1
∑

j=0

∣

∣

∣

∣

∣

1

‖xnj ‖
− 1

∣

∣

∣

∣

∣

·
∥

∥xnj
∥

∥→ 0 (n→ ∞).

Hence

lim
n→∞

∥

∥

∥

∥

∥

∥

N−1
∑

j=0

θj
xnj

‖xnj ‖

∥

∥

∥

∥

∥

∥

= lim
n→∞

∥

∥

∥

∥

∥

∥

N−1
∑

j=0

θjx
n
j

∥

∥

∥

∥

∥

∥

= N.

By definition X is not uniformly non-lN1 .
The converse is obvious from the definition of uniform non-lN1 -ness. �

Theorem 4.3. Let ψ ∈ ΨN . Assume that ψ has a unique minimal point

s = (s1, s2, . . . , sN−1) with
∑N−1

i=1 si < 1, 0 < si < 1, i = 1, 2, . . . , N − 1. Then

a Banach space X is uniformly non-lN1 if and only if there exists δ(0 < δ < 1)
such that for any x0, x1, . . . , xN−1 in BX , there exists an N -tuple of signs

θ = (θj), for which

‖
N−1
∑

j=0

sjθjxj‖ ≤ (1− δ)
1

ψ(s)
‖(s0x0, s1x1, . . . , sN−1xN−1)‖ψ ,

where s0 = 1−
∑N−1

i=1 sj .

Proof. Let X be a uniformly non-lN1 Banach space. Assume that the conclusion
fails to hold. Then for δn = 1

n
, n ∈ N, there exist sequences {xnj } in BX ,

j = 0, 1, . . . , N − 1, for any N -tuple of signs θ = (θj), we have
∥

∥

∥

∥

∥

∥

N−1
∑

j=0

sjθjx
n
j

∥

∥

∥

∥

∥

∥

> (1 −
1

n
)

1

ψ(s)

∥

∥(s0x
n
0 , s1x

n
1 , . . . , sN−1x

n
N−1)

∥

∥

ψ

= (1 −
1

n
)

1

ψ(s)

∥

∥(s0‖x
n
0‖, s1‖x

n
1 ‖, . . . , sN−1‖x

n
N−1‖)

∥

∥

ψ
.(4)

Because {‖xnj ‖}
∞
n=1, j = 0, 1, . . . , N − 1 are bounded sequences, we just let

‖xnj ‖ → aj(n → ∞), j = 0, 1, . . . , N − 1. Without loss of generality, we can

choose {‖xnj ‖}
∞
n=1 such that max{‖xnj ‖, 0 ≤ j ≤ N − 1} = 1. As aj is the limit

of {‖xnj ‖}
∞
n=1, we get max{aj, 0 ≤ j ≤ N − 1} = 1. Thus

∑N−1
j=0 sjaj > 0. In

(4) let n→ ∞, then there is

1

ψ(s)
‖(s0a0, s1a1, . . . , sN−1aN−1)‖ψ ≤

N−1
∑

j=0

sjaj .
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From this we get

ψ

(

s1a1
∑N−1
j=0 sjaj

, . . . ,
sN−1aN−1
∑N−1

j=0 sjaj

)

≤ ψ(s1, . . . , sN−1).

By the uniqueness of s = (s1, s2, . . . , sN−1), we get a0 = a1 = · · · = aN−1,

denote them as a. In addition, from (4) we get limn→∞
∥

∥

∥

∑N−1
j=0 sjθjx

n
j

∥

∥

∥ = 1 =

limn→∞
∑N−1
j=0

∥

∥sjθjx
n
j

∥

∥. Using Proposition 3.2 there holds

lim
n→∞

∥

∥

∥

∥

∥

∥

N−1
∑

j=0

θjx
n
j

∥

∥

∥

∥

∥

∥

= lim
n→∞

N−1
∑

j=0

‖θjx
n
j ‖ = Na.

It’s a contradiction by Lemma 4.2.
On the other hand, for any x0, x1, . . . , xN−1 in BX

∥

∥

∥

∥

∥

∥

N−1
∑

j=0

sjθjxj

∥

∥

∥

∥

∥

∥

≤ (1− δ)
1

ψ(s)
‖(s0x0, s1x1, . . . , sN−1xN−1)‖ψ

≤ (1− δ)
1

ψ(s)
‖(s0, s1, . . . , sN−1)‖ψ

= 1− δ.

We claim that X is uniformly non-lN1 by Lemma 4.1. �

Corollary 4.4. Let ψ ∈ Ψ2. Assume that ψ has the unique minimum at

t = t0(0 < t0 < 1). Then a Banach space X is uniformly non-square if and

only if there exists some δ(0 < δ < 1) such that for any x, y ∈ BX implies

min {‖(1− t0)x+ t0y‖, ‖(1− t0)x− t0y‖} ≤ (1− δ)
1

ψ(t0)
‖((1− t0)x, t0y)‖ψ.

Corollary 4.5. A Banach space X is uniformly non-lN1 if and only if there

exists some δ(0 < δ < 1) such that for any x0, x1, . . . , xN−1 in BX , there exists

an N -tuple of signs θ = (θj) for which
∥

∥

∥

∥

∥

∑N−1
j=0 θjxj

N

∥

∥

∥

∥

∥

p

≤ (1− δ)
‖x0‖

p + · · ·+ ‖xN−1‖
p

N
,

where 1 < p <∞.

Proof. We only need to let ψ(t)= ψp(t)=
[

(1−
∑N−1

i=1 ti)
p + t

p
1 + · · ·+ t

p
N−1

]
1
p

in Theorem 4.3. �
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