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THIN ADDITIVE BASES FOR MONIC POLYNOMIALS

IN Fq[t]

Andreas O. Bender, Bo-Hae Im, and Yoonjin Lee

Abstract. We explicitly construct a thin basis for the set M of monic
polynomials in one variable t over a finite field Fq.

1. Introduction

Additive problems in the natural numbers are often expressible in terms of
bases. In these terms, the Goldbach conjecture says that the primes are a
basis of order 2 for the set of even positive integers larger than 2, while the
theorem by Lagrange says that the squares are a basis of order 4 for the natural
numbers.

Definition 1.1. Let S be a nonempty set with addition and valuation v. For
an integer h ≥ 2 and a subset A ⊂ S, we define the sumset

hA = {f1 + · · ·+ fh | fi ∈ A and v(f1 + · · ·+ fh) ≥ v(fi) for all i = 1, . . . , h}.

The set A is called a basis of order h for S if S ⊆ hA, and A is an asymptotic

basis of order h for S if hA contains all but finitely many elements of S.

Remark 1.2. Note that for S = N with the usual absolute value v = | · |, there is
no need to impose the conditions v(f1+· · ·+fh) ≥ v(fi). For S = Fq[t] with the
degree valuation, however, these conditions are nontrivial if the characteristic
of Fq is not larger than h.
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For the set S of positive integers, Rohrbach [5] showed that the number of
elements less than or equal to n in a basis of order h is bounded from below
by a constant multiple of n1/h. Raikov [4] and Stöhr [6] independently gave
an explicit construction of a basis for positive integers which actually achieves
this lower bound; this is what is called a thin basis and its precise definition
will be given in Section 4. An easily accessible reference for these results is a
recent survey by Nathanson [3].

The purpose of this paper is to give an analogous result for the set of monic
polynomials in the polynomial ring Fq[t] over the finite field Fq of order q. We
give a lower bound for the size of a basis and we construct a thin basis achieving
the lower bound for its size.

We begin with some basic definitions in Section 2. Section 3 contains the
main result of this paper, an explicit construction of a thin basis for the set M,
using a result by Jia [2] on thin bases for finite abelian groups. In Section 4
we establish a lower bound for the size of a basis for the set M of monic
polynomials in Fq[t]. In the last section we also give an example of a basis of
Raikov-Stöhr type for M in Fq[t] with q prime, which turns out to be a thin
basis for M only if q = 2.

2. Monic polynomials in Fq[t]

Rather than considering the whole ring Fq[t], we restrict our attention to
the set of monic polynomials as an analogue of positive integers; for more
background on this see [1]. There exists a total order on the ring Z and the
positive integers form a monoid. However, on the ring Fq[t] there is only a
partial order defined by the degree, and the monic polynomials do not form a
monoid. This last fact, which amounts to saying that the sum of two monic
polynomials of the same degree is not monic, will play a significant role in what
follows.

For any set A of polynomials over Fq and a nonnegative real number x, the
counting function of A, denoted by A(x), counts the number of polynomials in
A whose degree is at most x, that is,

A(x) =
∑

f∈A
0≤deg(f)≤x

1.

We set the degree of the zero polynomial to ∞. We write f ≫ g if there exists
a constant c > 0 such that |f(x)| ≥ c |g(x)| for all nonnegative real numbers x.

3. Construction of an explicit basis for monic polynomials in Fq[t]

We include the proof of the following lemma because our situation allows a
slight improvement of the constant. The proof is almost identical to parts of
the proof of the main theorem in [2].
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Lemma 3.1. Let h ≥ 2 be an integer, q = ps with p a prime and ch =
h(1+p−1/h)h−1. For each positive integer n, let Hn be the set of all polynomials

in Fq[t] of degree at most n. Then there exists a basis Tn of order h for Hn

such that

|Tn| ≤ chq
n+1

h .

Proof. We first note that Hn is an abelian group of order qn+1(= ps(n+1))
which we write additively. According to [2, Lemma 1] and the proof of the
main theorem in [2], we decompose Hn as Hn = H ⊕ K, where |H | = puh,
H = A1 +A2 + · · ·+Ah with |Ai| = pu and K = K1 ⊕ · · · ⊕Kr with r ≤ h− 1
and each Kj isomorphic to Fp. In fact, u can be chosen to be the ceiling value

⌈ s(n+1)−(h−1)
h ⌉, so we have s(n+1)− uh ≤ h− 1. Note that r+ uh = s(n+1).

By [2, Lemma 2], each cyclic group Kj is a sum of subsets Aj1, . . . , Ajh with

|Aji| < |Kj |
1/h + 1 = p1/h + 1. The Aji are constructed as follows. With

v = ⌈p1/h⌉ + 1, we set Aji = {0, vi−1, . . . , (v − 1)vi−1} for i = 1, . . . , h and
j = 1, . . . , r.

Let Tn :=
⋃h

k=1 Bk, where Bk = Ak + A1k + · · · + Ark. Then Tn forms a
basis for Hn as in [2]. Replacing the lower bound equal to 2 for |Ki| by p, the
new bound for |Tn| is given by

|Tn| ≤
h∑

k=1

|Bk| <
h∑

k=1



pu
∏

1≤j≤r

(

|Kj |
1/h + 1

)



 ≤ h
(

1 + p−1/h
)h−1

q
n+1

h ,

where we use the identity qn+1 = (pu)hpr in the last inequality. Therefore, Tn

is a thin basis for Hn with |Tn| < chq
n+1

h . �

The following theorem is our main result, an explicit construction of a basis
for the set of monics M in Fq[t] with the estimate of its size.

Theorem 3.2. Suppose q = ps with p a prime and h ≥ 2 an integer. Let Tn

be a basis for Hn as given in Lemma 3.1. We then define

A0 = {0, 1}, A1 = {t+ a | a ∈ Fq}, and for each k ≥ 2,

Ak =
{
tk + atk−1 + b(t) | a ∈ Fq, b(t) ∈ Tk−2

}
∪
{
tk−1 + b(t) | b(t) ∈ Tk−2

}
.

Then A :=
⋃∞

k=0 Ak is a basis of order h for M in Fq[t] which satisfies

A(x) ≤ ch(q + 1)

(
qx/h − 1

q1/h − 1

)

≪ qx/h

for all real numbers x ≥ 0, where ch = h(1 + p−1/h)h−1.

Proof. For each integer n ≥ 0, let Hn be the set of all polynomials of degree
≤ n in Fq[t]. Then by Lemma 3.1 there exists a basis Tn of order h for Hn such
that

|Tn| ≤ chq
n+1

h ,

where ch = h(1 + p−1/h)h−1.
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First we show that A is a basis of order h for M. Let f(t) ∈ M be the monic
polynomial of degree n given by

f(t) = tn + an−1t
n−1 + · · ·+ a0, where ai ∈ Fq.

For the degrees 0 and 1, this polynomial f(t) can trivially be represented as a
sum of h basis elements since we have 1 = 1 + 0 + · · · + 0 in case of degree 0
(note that deg(0) ≤ 0) and t − a = t − a + 0 + · · · 0 in case of degree 1 (note
that deg(0) ≤ 1). Now let n ≥ 2. Then there exist unique nonnegative integers
m, r such that

h = mp+ r with 0 ≤ r < p.

Since f(t) − tn − an−1t
n−1 ∈ Hn−2 and Tn−2 is a basis for Hn−2, there exist

g1, . . . , gh ∈ Tn−2 such that

f(t) = tn + an−1t
n−1 + g1 + g2 + · · ·+ gh.

By the definition of Hn−2, we have that deg(gi) ≤ n− 2 < n = deg(f).
If r = 0, then h = mp, so htn−1 = 0 and

f(t) = (tn+(an−1+1)tn−1+ g1)+ (tn−1 + g2)+ · · ·+(tn−1+ gh) ∈ hAn ⊆ hA.

Suppose 0 < r < p. We set g(t) = tn + an−1t
n−1 + g1 + g2 + · · ·+ gr. Since we

are in characteristic p and mp = h− r, we have

f(t)− g(t) = mptn−1 + f(t)− g(t) =

h∑

i=r+1

(
tn−1 + gi

)
,

so f(t)− g(t) is in An + · · ·+An
︸ ︷︷ ︸

mp times

⊆ mpA. We can write

g(t) =
(
tn + (an−1 − r + 1)tn−1 + g1

)

+
(
tn−1 + g2

)
+ · · ·+

(
tn−1 + gr

)
∈ rAn ⊆ rA,

where by abuse of notation the letter r denotes both a natural number and its
image in Fp. This implies that

f(t) = g(t) + gr+1 + · · ·+ gh ∈ (r +mp)A = hA

and

deg(g) = n ≤ deg(f) and deg(gi) ≤ n− 2 < deg(f),

so A is indeed a basis of order h for M.
Now we compute A(x) for real numbers x ≥ 0. Let x be a nonnegative real

number and n be the largest integer with n ≤ x. Then

A(x) = A(n) ≤
n∑

k=0

|Ak|

= |A0|+ |A1|+

n∑

k=2

(q|Tk−2|+ |Tk−2|)
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= 2 + q +

n∑

k=2

(q + 1)|Tk−2|

≤ 2 + q + ch(q + 1)

(
qn/h − q1/h

q1/h − 1

)

≤ ch(q + 1)

(
qn/h − q1/h

q1/h − 1
+ 1

)

≤ ch(q + 1)

(
qn/h − 1

q1/h − 1

)

≤ ch(q + 1)

(
qx/h − 1

q1/h − 1

)

≪ qx/h

and the proof is complete. �

Corollary 3.3. Let h be an integer greater than 1. Every monic polynomial

in Fq[t] of degree n ≥ 1 can be written as a sum of one monic polynomial of

degree n and h− 1 monic polynomials of degree n− 1.

Proof. The proof of Theorem 3.2 shows that each monic f ∈ M of degree n

can be written as follows: If n = 1, then

f(t) = t+ a = (t+ (a− h+ 1)) + 1 + · · ·+ 1
︸ ︷︷ ︸

(h−1) summands

and if n ≥ 2, then

f(t) = (tn + atn−1 + b1(t)) + (tn−1 + b2(t)) + · · ·+ (tn−1 + bh(t)),

where a ∈ Fq and each bi(t) ∈ Fq[t] is of degree ≤ n− 2. �

4. A lower bound for the size of a basis of finite order

Proposition 4.1. Let h ≥ 2 and A = {fk}
∞
k=1 be a set of polynomials in Fq[t]

with f1 = 0 and fk monic for each k ≥ 2 such that fi 6= fj for all i 6= j and

deg(fk) ≤ deg(fk+1) for all k ≥ 1.
If A is an asymptotic basis of order h for M, then

(1) A(x) ≫ qx/h

for all sufficiently large real numbers x. If A is a basis of order h for M, then

the inequality (1) holds for all real numbers x ≥ 0.

Proof. We closely follow the proof of the analogous statement for integers given
in [5] (see [3, Theorem 1] for a more easily accessible reference). If A is an
asymptotic basis of order h for M, there exists an integer n0 such that every
monic polynomial f ∈ Fq[t] with deg(f) ≥ n0 can be represented as a sum of
h elements of A whose degrees are less than or equal to deg(f). Let x ≥ n0 be
a real number and let n be the largest integer ≤ x. Then A(x) = A(n). For
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estimating A(x) we compare the cardinalities of the two sets S and S̃ defined
as follows.

S = {f ∈ M | n0 ≤ deg f ≤ n},

S̃ = {g1 + g2 + · · ·+ gh | gi ∈ A, deg gi ≤ n, i = 1, . . . , h}.

Since certainly S ⊆ S̃, we have

qn < qn + qn−1 + . . .+ qn0 = |S| ≤ |S̃| =

(
A(n) + h

h

)

<
(A(n) + h)h

h!

and equation (1) follows.
If A is a basis of order h for Fq[t], then 1, as the monic polynomial of degree

0, must be contained in A and therefore A(n) > 0 for all n ≥ 1. Therefore
A(x) ≫ qx/h for all x ≥ 1 and the proof is complete. �

Definition 4.2. Let A be a subset of the set M of monic polynomials in Fq[t].
If an asymptotic basis A of order h for M achieves the lower bound for the size
A(x) ≫ qx/h given by Proposition 4.1, that is, if we have A(x) ≪ qx/h, then A

is called a thin asymptotic basis for M. If A is a basis A of order h for M and
A(x) ≪ qx/h, then A is called a thin basis of order h for M.

Remark 4.3. The basis found in Theorem 3.2 is thus in fact a thin basis of
order h for M in Fq[t].

Remark 4.4. As mentioned in Remark 1.2, if the characteristic of Fq is not
larger than h in the definition of a basis of a set S, then the additional condition
v(f1+ · · ·+fh) ≥ v(fi) for all i = 1, . . . , h is not trivial. Finding a lower bound
for a basis of S without that condition is therefore still an open question.

5. Another example of a basis

The following theorem gives another example of a basis for M in Fp[t] with
p a prime. The Raikov-Stöhr construction in [3, Theorem 2] can be carried
out over Fp[t] and it works exactly like the one for the case of integers. In
particular, this example provides a thin basis for M in F2[t].

Theorem 5.1 (Raikov-Stöhr type basis for monics in Fp[t]). Fix a prime p.

Let h ≥ max(2, p− 1) be given and let ℓ =
[

h
p−1

]

. For each i = 0, 1, . . . , ℓ− 1,

let Wi = {i, ℓ+ i, 2ℓ+ i, . . .} denote the set of all nonnegative integers that are

congruent to i modulo ℓ, and let E(Wi) be the set of all finite subsets of Wi.

Let

Ai =







g =
∑

e∈E
ce∈Fp

cet
e : E ∈ E(Wi) and cdeg(g) = 1







.
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Then A :=
⋃ℓ−1

k=0 Ak is a basis of order h for M in Fp[t] such that for all x > 0,

A(x) ≪ p(p−1)x/h.

In particular, when p = 2, the set A is a thin basis for M in F2[t], i.e., A
satisfies

2x/h ≪ A(x) ≪ 2x/h.
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