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PURE INJECTIVE REPRESENTATIONS OF QUIVERS

EsSMAEIL HOSSEINI

ABSTRACT. Let R be aring and Q be a quiver. In this paper we give an-
other definition of purity in the category of quiver representations. Under
such definition we prove that the class of all pure injective representations
of Q by R-modules is preenveloping. In case Q is a left rooted semi-co-
barren quiver and R is left Noetherian, we show that every cotorsion flat
representation of Q is pure injective. If, furthermore, R is n-perfect and
F is a flat representation Q, then the pure injective dimension of F is at
most n.

1. Introduction

Throughout the paper rings are associative with identity and modules are
unital (unless otherwise specified). If Q is a quiver (a directed graph), then
an arrow from a vertex v; to a vertex wve is denoted by a : v1 —> vy. The
set of vertices (resp. arrows) of a quiver Q is denoted by Vg (resp. Eg).
For a given arrow a of Q, i(a) denotes the initial vertex of a and t(a) denotes
the terminal vertex of a. A quiver may be thought as a category in which
the objects are vertices and the morphisms are paths, a path is a sequence of
arrows. A representation X by modules of a quiver Q is then a covariant functor
X : @ —R-Mod. Thus a representation X is determined by giving a module
X (v) to each vertex v € Vg and a homomorphism X (a) : X(v;) — X(ve)
to each arrow a € Eg. A morphism f between representations X and ) is
a natural transformation. The category of representations of a quiver Q by
left R-modules over a ring R is denoted by Rep(Q, R). This is a Grothendieck
category with projective generators and injective cogenerators (see [1] and [2]).
A quiver Q is called left(right) rooted if there is no path of the form --- —
e — e —>e(e— e — e —---)in Q. The study of special objects in
the category of representations of quivers has a long history in the literature.
Especially flat representations of a left rooted quiver, and existence of flat covers
in the category Rep(Q, R), when Q is left rooted, have been studied in [3], [8].
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Let Flat(Q) be the class of all flat representations of a left rooted quiver Q and
Flat(Q)*, be the class of all object C of Rep(Q, R) such that Extg(F,C) = 0 for
every F €Flat(Q). A representation C of Q is called cotorsion if C eFlat(Q)L.
Therefore Flat(Q)~ is the class of all cotorsion representations of Q. Cotorsion
representations of a left rooted quiver are characterized in [11].

Let us first recall some notations and results of [2, Corollary 6.7] that we
need throughout. Let Q@ be a quiver. We can define the opposite quiver Q°P =
(Vg,EZ) to Q such that its set of vertices is Vg and its set of arrows is EJ,
in which v — w € Eg if and only if w — v € Eg. Note that Rep(Q°P, R°P)
is the category of representations of Q°P by right R-modules.

Let X be a representation of Q, the representation X+ € Rep(Q°P, RP) is
given by the following:

i) For any v € Vg, X+ = Homg (X (v), Q/Z),

ii) For any a € Eg such that a: v — w, X*(a) : X1 (w) — XT(v).

Let Inj(Q°P) be the class of all injective representations of Q°P. By the

+
following proposition, there is a fully faithful functor Flat(Q) i> Inj(Q°P) .
Proposition 1.1. Let Q be a left rooted quiver. A representation F of Q is
flat in Rep(Q, R) if and only F* is an injective object of Rep(Q°P, R°P).

Proof. See [2, Corollary 6.7]. O

The category Rep(Q, R) is a locally finitely presented additive category,
so there is a categorical notion of purity in terms of the finitely presented
representations. By [9], every representation of Q has a pure injective envelope.
Actually if F is a flat representation, it can be easily shown that the pure
injective envelope (in the sense of [9]) is flat if, and only if, it coincides with its
cotorsion envelope. Therefore the main result of this work, Theorem 3.6, can
not be followed from [9]. So, for this end, we had to make a new definition of
purity. We give many propositions to show that our notion of purity is well-
behaved. For example in Theorem 2.13 we prove that the classical relation
between flatness and purity is true in Rep(Q, R).

It is possible that the categorical notion of purity and our notion of purity
are the same, but our notion of purity has some advantage. For instance,
let 0— X — )Y — Z — 0 be an exact sequence of representations, then
there exists the following commutative diagram with exact rows and pure exact
columns

L]
¢ ¢

0_>X++_>y++_>z++_>0,

—C=<=—0

in Rep(Q, R). But from the categorical notion of purity it is not clear if we can
deduce this important diagram.
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In Section 2 we give the definition of purity in Rep(Q, R) and study its prop-
erties, and show that under such definition each representation X of Q is a pure
subrepresentation of a pure injective representation. In Section 3, over a left
Noetherian ring we give necessary and sufficient conditions for X €Rep(Q, R)
to be flat and pure injective when Q is a left rooted semi-co-barren quiver. If
R is n-perfect, then the finiteness of the length of pure injective resolution of
X will be discussed.

Setup: Throughout this paper Q is a left rooted quiver.

2. Purity and pure injectivity

This section is devoted to the study of purity in Rep(Q, R). As a rich
reference to the concepts of purity and pure injectivity and its properties in
the category of R-modules, see [10], [12] and [13].

Definition 2.1. Let A be an abelian category and C be a class of objects of
A. For an object A of A, an object C € C is called a C-envelope of A if there
is a morphism ¢ : A — C such that the following hold.

(i) For any morphism ¢’ : A — C’ with C' € C, there is a morphism
f:C— C with ¢’ = fo.

(ii) If an endomorphism f : C — C is such that ¢ = f¢, then f must be
an automorphism.

If (i) holds, ¢ : A — C is called a C-preenvelope. Sometimes we call C or
the map ¢ a C-envelope (preenvelope) of A. For more details on the concept of
(pre)enveloping classes and their properties, see [6] and [12].

A morphism f: X — ) of representations is called a monomorphism if f
has a cancelation property from the left, that is if for each representation Z
of Q and each morphisms g,h : Z2 — X which fh = fg, then g = h. On
the other hand a morphism f : X — )Y is a monomorphism if and only if
for every v € Vg, the morphism f(v) : X(v) — Y(v) is a monomorphism of
R-modules. Now we make our definition of purity in Rep(Q, R).

Definition 2.2. A monomorphism f : X — ) in Rep(Q,R) is a pure
monomorphism if f* : YT — X7T is a split epimorphism in the category
Rep(Q°P, RP).

Remark 2.3. If X — ) is a pure monomorphism in Rep(Q, R), then X' (v) —
Y(v) is a pure monomorphism of R-modules for any vertex v of Q. But the
converse is not true. To see this let M be an arbitrary R-module. Consider the

M
quiver Q : vy —= vy , and the representations M; : M —;(?\)4 @ M (where

Mi (a) s injection) and M : M @ M 2N @ M (where Ma(a) is identity).

We see that My (v1) — Ma(v1) and My (ve) — M2 (ve) are pure monomor-
phisms of R-modules but M; —%> M, | where 0(a) = (Mi(a), M2(a)), is not
pure in Rep(Q, R).
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Example 2.4. Let X — ) be a monomorphism in Rep(Q, R) such that for
each vertex v of Q, X(v) — Y(v) is a pure monomorphism of R-modules,
and for each arrow a : v — w, X(a) : X(v) — X(w) is a split epimorphism.
Then X — Y is a pure monomorphism in Rep(Q, R).

Proposition 2.5. (i) Any split exact sequence
0—X—>Y—>2Z2—0

in Rep(Q, R) is pure exact.

(ii) Any direct limit of pure exact sequences is pure.

(iii) Let X C Y C Z be a sequence of subrepresentations of Z. If X is a
pure subrepresentation of Z, then it is also pure as a subrepresentation of ).

Proof. (i) Since the exact sequence
0—X—>)Y—>2Z2—0
is split, Y = X @ Z. Therefore Y+ = X+ ¢ Z* and so
0—Zt — Y7 — X" —0
is split exact in Rep(Q°P, R°P). Thus
0—X —>)Y—>2Z2—0

is pure exact sequence in Rep(Q, R).
(ii) Let
0— & — Vi — 2Zi — 0)ier
be a direct system of pure exact sequences in Rep(Q, R). Then

0—Z" — V" — X" — 0)ics

is an inverse system of split exact sequences in Rep(Q°P, R°P). Therefore, for
each i € I we have the following split short exact sequence

0 —1limz" — lim)," — lm&;* — 0,
and then we have the split short exact sequence
0 — (limZ;)" — (1imY;)* — (limA&;)" — 0.

This implies that the short exact sequence
0 — limX; — lim); — limZ; — 0,
— — —
i€l i€l i€l
is pure exact sequence in Rep(Q, R).
(iii) Let
XY Z
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be a sequence of subrepresentations in Rep(Q, R). We have the following com-
mutative diagram in Rep(Q, R):
X2y

Therefore we have the commutative diagram:
it
z+ 3 y+

()

fir, 7
X-i-

Rep(Q°P, R°P), and there exists k; : XY+ — Z% such that i]k; = 1x+. So
iy (i k1) = (i35 k1 = iT k1 = Ly+.
Thus the composition

i i3 k1
y+ B xt 20yt

is 1x+. Therefore
id
yt 2 xt
admits a section, and hence X < ) is a pure monomorphism in Rep(Q, R). O

Proposition 2.6. Let
E0—X—Y—Z—0

be an exact sequence in Rep(Q, R).
(i) Let &€ be a pure exact sequence in Rep(Q, R). Then Y is flat in Rep(Q, R)
if and only if X and Z are flat.
(i) Let Z be a flat object of Rep(Q, R). Then X is a flat object of Rep(Q, R)
if and only if Y is flat.
Proof. (i) Let £ be a pure exact sequence of Rep(Q, R). Then the exact se-
quence
0—Zt — Y7 — X" —0
is split. So Y7 is injective if and only if X and Z* are injective. Therefore
Y is a flat representation if and only if X and Z are flat.
(ii) The exact sequence
0—Zt — Y7 — X" —0
is split. Thus
YVr=xT 2",
So X7 is injective if and only if YT is injective. Therefore X is flat if and only
if Y is flat. O
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Recall that a representation Z of Q is called pure injective if for any pure
exact sequence
00— X —Y

in Rep(Q, R), the sequence
Homg (Y, Z) — Homg(X,Z) — 0
is exact in the category of abelian groups.

Proposition 2.7. Let Q be any quiver and X be a representation of Q. Then
(i) The canonical monomorphism X — XTF is pure and X is a pure
injective representation.
(ii) A representation X is pure injective if and only if it is a direct sum-
mand of XTT. Moreover, YT is pure injective, for any representation ) of
Rep(Q°P, R°P).

Proof. In the first place we show that X — X+t is a pure injection. By
definition, it suffices to give a section X**T — X+, But the canonical map
X+ — X*+++ does the job. Suppose then that 0 —= A —= M is a pure
monomorphism and f : NV — X*t is a map. Let s: NT —= M™T be such
that iTs = 1y+ and set g=sft: X+ — M+ . Clearly g"it+ = fTT.

Note that since X ——= X+* is a pure monomorphism, there exists a map

t: Xt — X*F which is a retraction for o1t ie., tphT = 1y++. On the
other hand, since the canonical map @ is natural, we infer that i = i op
and f*ton = o1 f. Now define h = tg* o and observe that hi = f. Thus
the map Hom(M, X*) — Hom(N, X*1) is a surjection and therefore X*+
is pure injective.

(ii) Suppose X is a pure injective representation. Then from the canonical
monomorphism ¢y, which is pure by (i), one obtains a map f: X*+ — X
satisfying 1y = fypx. The converse is obvious from (i). Meanwhile, Since X*
is a summand of XYT++ = (X¥**)* we deduce that X't is pure injective. [

Corollary 2.8. FEvery injective representation of Q is pure injective.

Proof. Let Z be an injective representation of @. Then the canonical monomor-

phism 0 —=Z — It is a split monomorphism and hence Z is pure injec-
tive. 0

Remark 2.9. If X is a pure injective representation, then it possesses a pure
injective R-module in each vertex. But the converse need not be true.

Example 2.10. If X is a representation of @ such that for any vertex v of Q,
X (v) is pure injective and for any arrow a of Q, X(a) is a split epimorphism,
then X is a pure injective representation of Q.

Corollary 2.11. Ewvery representation of Q has pure injective preenvelope.
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Proof. Let X be a representation of @ and f : X — ) be a morphism of
representations such that ) is pure injective. It is known that X — X+
is a pure monomorphism. So there exists a morphism of representations ¢ :
X+t — Y such that the diagram

X 22

e
Y

is commutative. This completes the proof. (I

Remark 2.12. By [11, Theorem 2.6], a representation C of Q is cotorsion if
and only if it is cotorsion in each vertex. Therefore by Remark 2.9 every pure
injective object of Rep(Q, R) is a cotorsion representation of Q.

Theorem 2.13. An object Z of Rep(Q, R) is flat if and only if any exact
sequence

0—X¥—Y—Z—0
is pure in Rep(Q, R).
Proof. Tt Z is flat in Rep(Q, R), then for any exact sequence

(2.13.1) 0—X—)Y—Z—0

in Rep(Q, R), the sequence 0 —= ZT — YT — XT — 0 is split exact in
Rep(Q°P, R°P), because Z7 is injective. Hence (2.13.1) is pure.
Let every exact sequence

00— X —Y—Z—0

be pure in Rep(Q, R). It suffices to show that Z7 is injective in Rep(Q°P, R°P).
For this end, let

(2.13.2) o— 2zt Lix—y-—o0

be an exact sequence in Rep(Q°P, R°P). Consider the following pullback dia-
gram

0—= Y+ P,z 0

| e ks

0_>y+_>X+_>2++_>0

in Rep(Q, R) with exact rows. By assumption the top row is pure and hence
split, because YT is pure injective. So there is a morphism A’ : Z — P of
representations such that hh’/ = 1z. It follows that g1 = gh/ : Z — X7
is a morphism of representations such that fTg; = f*tgh’ = ihh' = i. Now
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consider the following commutative diagram

0—sz+_T _x Y 0

b b

0— zt+ttl o pt+ oyt o 0.

It follows that g kf = g f*+j = i*j = 1z+. Therefore (2.13.2) is split and
hence Z7T is an injective object of Rep(Q°P, R°P). Then by Proposition 1.1, Z
is flat in Rep(Q, R). O

3. Pure injective dimension of flat representations

In this section we define the notion of a semi-co-barren quiver and give a
characterization of a pure injective flat object in the category of representations
of a semi-co-barren quiver.

Definition 3.1. A quiver Q is called semi-co-barren if for every v € Vg,
{a € Eg | t(a) = v} is a finite set.

Example 3.2. Let Q be a quiver whose connected components are barren
trees. Then Q°P is a semi-co-barren quiver. Recall that a tree T' with a root v
is said to be barren if the number of vertices n; of the ith state of T is finite
for every natural number ¢ and the sequence of positive natural numbers nq,
Ng, ... stabilizes, for more details see [4] and [5].

Set up: In this section we let R be a left Noetherian ring and Q be a
semi-co-barren quiver or a quiver of type A, in the sense of [3].

Lemma 3.3. Let F be a representation of Q. Then F is flat if and only if
F++ is a flat representation of Q.

Proof. Let F be a flat representation of Q. Since Q is a semi-co-barren quiver
and R is left Noetherian then for every v € Vg, @, (,y—, F " (i(a)) — F T (v)
is a split monomorphism of flat R-modules. Therefore by [8] and [3], FtT is a
flat representation of Q.

The converse is a direct consequence of Proposition 2.6(i). O

Theorem 3.4. Let F be a flat representation of Q. Then the followings are
equivalent:

(i) F is pure injective.

(ii) F is cotorsion.

(iii) F is isomorphic to a direct summand of F+T.

Proof. (1)=(ii) Let F be a pure injective representation of Q. F is cotorsion in
each vertex and hence by [11, Theorem 2.6] it is cotorsion object of Rep(Q, R).

(ii)=-(iii) Let F be a cotorsion representation of Q. By Lemma 3.3, Ft+
and FTT /F are flat representations of Q. So

0—> F 2L Ft+ — Coker\r — 0,
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is split and hence F is pure injective.

(iii)=-(i) This is trivial. O
Corollary 3.5. Let F be a flat object of Rep(Q, R). Then F is pure injective
if and only if F(v) is pure injective R-module for all v € Vg.

Proof. Assume that for any v € Vg, F(v) is pure injective R-module. Thus for
any v € Vg, F(v) is cotorsion. So by [11, Theorem 2.6], F is cotorsion object
in Rep(Q, R). Then by Theorem 3.4 it is pure injective.

The converse is trivial. O

Let Pinj(Q) be the class of all pure injective objects in Rep(Q, R). In Section
2, we proved that Pinj(Q) is preenveloping. So every object X' in Rep(Q, R)
has a unique(up to homotopy equivalence) pure injective resolution. Then for a
given representation X of Q, the pure injective dimension of X can be defined
as follows

pidX = min{n | X has a pure injective resolution of lenght n}.

Recall that a ring R is called n-perfect if for each flat R-module F, cdF'(the
cotorsion dimension of F) is at most n (for more details see [7]). In the following
theorem we show that, if R is n-perfect, then

sup{cdF | for each flat representation F}
= sup{pidF]| for each flat representation F}.

Theorem 3.6. Let R be an n-perfect ring and F be a flat representation of
Q. Then pidF < n.

Proof. Let F be a flat representation of Q and

671,71 sn

0> F 9 0 3% o1 9 cn o ..

be a pure injective resolution of X such that
Ch = (C*! /Tms* )T+
for each i > 2. By Proposition 2.6(i) and Lemma 3.3, for each i > 1, Cokerd*~!
is a flat representation of Q. Furthermore, for all v € Vg, the exact sequence
o(v 5% (v 5t (v 5"y 6" (v
0 — F(o) @ o) _(ch(v) HO —>(d”(v) C

)

is a pure injective resolution of F(v) by pure injective flat R-modules. We
know that for any v € Vg, cdF(v) < n. Then for any v € Vg, Cokerd”*(v)
is a cotorsion flat R-module. Therefore by [11, Theorem 2.6] Cokerd™~! is
cotorsion flat, and by Theorem 3.4, it is pure injective flat in Rep(Q, R). Then
pidF < n. (I
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