DOI QR코드

DOI QR Code

Reliability and Sensitivity Analysis for Laminated Composite Plate Using Response Surface Method

반응면 기법을 이용한 복합재 평판의 신뢰도 및 민감도해석

  • Lee, Seokje (Department of Aerospace Engineering, Chungnam National University) ;
  • Jang, Moon-Ho (Mechanical Engineering R&D Lab, LIG Nex1) ;
  • Kim, Jae-Ki (Mechanical Engineering R&D Lab, LIG Nex1) ;
  • Moon, Jung-Won (Mechanical Engineering R&D Lab, LIG Nex1) ;
  • Kim, In-Gul (Department of Aerospace Engineering, Chungnam National University)
  • Received : 2012.07.16
  • Accepted : 2012.12.06
  • Published : 2013.04.01

Abstract

Advanced fiber-reinforced laminated composites are widely used in various fields of engineering to reduce weight. The material property of each ply is well known; specifically, it is known that ply is less reliable than metallic materials and very sensitive to the loading direction. Therefore, it is important to consider this uncertainty in the design of laminated composites. In this study, reliability analysis is conducted using COMSOL and MATLAB interactions for a laminated composite plate for the case in which the tip deflection is the design requirement and the material property is a random variable. Furthermore, the efficiency and accuracy of the approximation method is identified, and a probabilistic sensitivity analysis is conducted. As a result, we can prove the applicability of the advanced design method for the stabilizer of an underwater vehicle.

섬유강화 복합재료는 무게 절감을 위해 다양한 공학 분야에 널리 사용되고 있다. 각 층의 재료 물성치는 일반적인 금속재료에 비해 더 불확실한 것으로 알려져 있으며 하중 방향에 따라 매우 민감하게 반응한다. 그러므로, 복합재 적층판의 설계에서 불확실성을 고려하는 것은 매우 중요하다. 본 논문에서는 COMSOL과 MATLAB을 이용하여 끝단 변위가 설계 요구조건으로 정의된 경우, 재료 물성치를 확률변수로 하는 복합재 적층판에 대한 신뢰성 해석을 수행하였다. 또한 근사기법의 효율성과 정확성을 확인하고 확률론적 민감도 해석을 수행하였다. 결과적으로 수중 비행체의 비행자세 안정장치에 대한 개선된 설계 방법의 적용가능성을 제시할 수 있었다.

Keywords

References

  1. Baker, A., Dutton, S. and Kelly D., 2004, Composite Materials for Aircraft Structures, 2nd ed., AIAA Education Series.
  2. Long, M. W. and Narciso, J. D., 1992, Probabilistic Design Methodology for Composite Aircraft Structures, DOT/FAA/AR-99/2.
  3. Lee, S. J., Kim, I. G. and Jang, M. H., 2007, "Reliability Analysis for Composite Plate with the Various Design Requirements," Journal of the Korean Society for Composite Materials, Vol. 20, No. 4, pp. 25-30.
  4. Yang, Y. S., 1999, Structural Reliability Analysis, Publishing Devision of Seoul National University, pp. 67-75.
  5. Haldar, A. and Mahadevan, S., 2000, Reliability Assessment using Stochastic Finite Element Analysis, John Wiley & Sons Inc.
  6. Myers, R. H. and Montgomery, D. C., 2002, Response Surface Methodology, John Wiley & Sons Inc.
  7. Liu, H. and Chen, W., 2004, "Probabilistic Sensitivity Analysis Methods for Design under Uncertainty," AIAA 2004-4589, pp. 5-6.
  8. COMSOL, 2011, COMSOL Multiphysics Release Notes, COMSOL Inc.
  9. Swanson, S. R., 1997, Introduction to Design and Analysis with Advanced Composite Materials, Prentice-Hall International Inc.
  10. Voyiadjis, G. Z. and Kattan, P. I., 2005, Mechanics of Composite Materials with MATLAB, Springer, pp. 169-170.
  11. Jeong, H. K. and Shenoi, R. A., 2000, "Probabilistic Strength Analysis of Rectangular FRP Plates Using Monte Carlo Simulation," Computers and Structures 76, pp. 219-235. https://doi.org/10.1016/S0045-7949(99)00171-6

Cited by

  1. The Development of Fixing Equipment of the Unit Module Using the Probability Distribution of Transporting Load vol.16, pp.6, 2015, https://doi.org/10.5762/KAIS.2015.16.6.4267