DOI QR코드

DOI QR Code

A Study on the Integrated Simulation and Condition Monitoring Scheme for a PMSG-Based Variable Speed Grid-Connected Wind Turbine System under Fault Conditions

PMSG 적용 가변속 계통연계형 풍력발전 시스템의 통합 시뮬레이션 및 스위치 개방고장 진단기법 연구

  • Kim, Kyeong-Hwa (Dept. of Electrical and Information Engineering, Seoul National University of Science and Technology) ;
  • Song, Hwa-Chang (Dept. of Electrical and Information Engineering, Seoul National University of Science and Technology) ;
  • Choi, Byoung-Wook (Dept. of Electrical and Information Engineering, Seoul National University of Science and Technology)
  • 김경화 (서울과학기술대학교 전기정보공학과) ;
  • 송화창 (서울과학기술대학교 전기정보공학과) ;
  • 최병욱 (서울과학기술대학교 전기정보공학과)
  • Received : 2012.12.03
  • Accepted : 2013.01.25
  • Published : 2013.03.31

Abstract

To analyze influences under open fault conditions in switching devices, an integrated simulation and condition monitoring scheme for a permanent magnet synchronous generator (PMSG) based variable speed grid-connected wind turbine system are presented. Among various faults in power electronics components, the open fault in switching devices may arise when the switches are destructed by an accidental over current, or a fuse for short protection is blown out. Under such a faulty condition, the grid-side inverter as well as the generator-side converter does not operate normally, producing an increase of current harmonics, and a reduction in output and efficiency. As an effective way for a condition monitoring of generation system by online basis without requiring any diagnostic apparatus, the estimation schemes for generated voltage, flux linkage, and stator resistance are proposed and the validity of the proposed scheme is proved through comparative simulations.

Keywords

References

  1. Z. Chen, J. M. Guerrero, and F. Blaabjerg, "A review of the state of the art of power electronics for wind turbines", IEEE Trans. on Power Electr., vol. 24, no. 8, pp. 1859-1875, 2009. https://doi.org/10.1109/TPEL.2009.2017082
  2. I. Munteanu, S. Bacha, A. Bratcu, J. Guiraud, and D. Roye, "Energy-reliability optimization of wind energy conversion systems by sliding mode control", IEEE Trans. on Energy Conv., vol. 23, no. 3, pp. 975-985, 2008. https://doi.org/10.1109/TEC.2008.917102
  3. S. Grabic, N. Celanovic, and V. Katic, "Permanent magnet synchronous generator cascade for wind turbine applications", IEEE Trans. on Power Electr., vol. 23, no. 3, pp. 1136-1142, 2008. https://doi.org/10.1109/TPEL.2008.921181
  4. S. J. Oh, M. Y. Cha, J. W. Kim, J. K. Jeong, B. M. Han, and B. H. Chang, "Development of hardware simulator for DFIG wind power system composed of anemometer and motor-generator set", The Transactions of Korean Institute of Power Electronics, vol. 16, no. 1, pp. 11-19, 2011. https://doi.org/10.6113/TKPE.2011.16.1.11
  5. E. H. Kim, K. B. Kang, J. H. Kim, S. H. Moon, S. B. Oh, and S. H. Kim, "Modeling and analysis of variable wind speed turbine system using back to back converter", Journal of The Korean Institute of Illuminating and Electrical Installation Engineers, vol. 19, no. 8, pp. 150-157, 2005. https://doi.org/10.5207/JIEIE.2005.19.8.150
  6. D. Y. Yu, Y. S. Choi, H. H. Choi, and J. W. Jung, "Fuzzy speed controller design of permanent magnet synchronous generators for variable-speed wind turbine systems", Journal of The Korean Institute of Illuminating and Electrical Installation Engineers, vol. 25, no. 2, pp. 69-79, 2011.
  7. A. D. Hansen, and G. Michalke, "Multi-pole permanent magnet synchronous generator wind turbines' grid support capability in uninterrupted operation during grid faults", IET Renewable Power Gener., vol. 3, no. 3, pp. 333-348, 2009. https://doi.org/10.1049/iet-rpg.2008.0055
  8. S. H. Jang, H. G. Park, D. C. Lee, and H. G. Kim, "Sensorless control of PMSG for small wind turbines", The Transactions of Korean Institute of Power Electronics, vol. 14, no. 1, pp. 15-22, 2009.
  9. A. H. Kasem, E. F. El-Saadany, H. H. El-Tamaly, and M. A. A. Wahab, "An improved fault ride-through strategy for doubly fed induction generator-based wind turbines", IET Renew. Power Gen., vol. 2, no. 4, pp. 201-214, 2008. https://doi.org/10.1049/iet-rpg:20070092
  10. ISET Offshore M&R Final Public Report, "Advanced maintenance and repair for offshore wind farms using fault prediction and condition monitoring techniques", funded by the European Commission.
  11. P. Caselitz, and J. Giebhardt, "Condition monitoring and maintenance strategies for the next generation of large offshore wind turbines", ISET Offshore M&R Final Public Report.
  12. H. Polinder, H. Lendenmann, R. Chin, and W. M. Arshad, "Fault tolerant generator systems for wind turbines", IEEE International Electric Machines and Drives Conference (IEMDC), pp. 675-681, 2009.
  13. M. A. Parker, Ng Chong, and Ran Li, "Fault-tolerant control for a modular generator converter scheme for direct-drive wind turbines", IEEE Trans. on Indus. Electr., vol. 58, no. 1, pp. 305-315, 2011. https://doi.org/10.1109/TIE.2010.2045318
  14. F. Filippetti, G. Franceschini, C. Tassoni, and P. Vas, "Recent developments of induction motor drives fault diagnosis using AI techniques", IEEE Trans. on Indus. Electr., vol. 47, no. 5, pp. 994-1004, 2000.
  15. M. A. Awadallah, M. M. Morcos, S. Gopalakrishnan, and T. W. Nehl, "A neuro-fuzzy approach to automatic diagnosis and location of stator inter-turn faults in CSI-fed PM brushless DC motors", IEEE Trans. Energy Conv., vol. 20, no. 2, pp. 253-259, 2005. https://doi.org/10.1109/TEC.2005.847976
  16. R. L. A. Ribeiro, C. B. Jacobina, E. R. C. Silva, and A. M. N. Lima, "Fault detection of open-switch damage in voltage-fed PWM motor drive systems", IEEE Trans. Power Electr., vol. 18, no. 2, pp. 587-593, 2003. https://doi.org/10.1109/TPEL.2003.809351
  17. R. Spee, and A. K. Wallace, "Remedial strategies for brushless DC drive failures", IEEE Trans. Indus. Appl. vol. 26, no. 2, pp. 259-266, 1990. https://doi.org/10.1109/28.54251
  18. T. H. Liu, J. R. FU, and T. A. Lipo, "A strategy for improving reliability of field-oriented controlled induction motor drives", IEEE Trans. Indus. Appl. vol. 29, no. 5, pp. 910-918, 1993. https://doi.org/10.1109/28.245714
  19. S. Heier, and R. Waddington, Grid Integration of Wind Energy Conversion Systems. John Wiley & Sons, 2006.
  20. P. C. Krause, Analysis of Electric Machinery. New York: McGraw-Hill, 1986.
  21. C. K. Chun, and C. U. Kim, "Current sensorless three phase PWM AC/DC boost converter with unity power factor", Journal of The Korean Institute of Illuminating and Electrical Installation Engineers, vol. 17, no. 6, pp. 105-112, 2003. https://doi.org/10.5207/JIEIE.2003.17.6.105
  22. J. J. Kim, and S. H. Song, "PSCAD / EMTDC simulation model of variable speed wind power generation system using permanent magnet synchronous machine", The Transactions of Korean Institute of Power Electronics, vol. 10, no. 6, pp. 610-617, 2005.
  23. R. C. Dorf, and R. H. Bishop, Modern Control Systems. Prentice-Hall International Editions, 2005.
  24. H. W. van der Broeck, H. C. Skudelny, and G. V. Stanke, "Analysis and realization of a pulsewidth modulator based on voltage space vectors", IEEE Trans. on Ind. Appl., vol. 24, no. 1, pp. 142-150, 1988. https://doi.org/10.1109/28.87265
  25. J. S. Ko, J. H. Lee, and M. J. Youn, "Robust digital position control of brushless DC motor with adaptive load torque observer", IEE Electr. Power Appl., vol. 141, no. 2, pp. 63-70, 1994. https://doi.org/10.1049/ip-epa:19949858
  26. Y. D. Landau, Adaptive Control - The Model Reference Approach. Marcel Dekker, New York, 1979.