DOI QR코드

DOI QR Code

Synthesis of Monomers for Polyamide-type TPEs from Oleic Acid

천연 올레인산 기반 폴리아미드계 TPEs 단량체 합성

  • Koh, Moo-Hyun (Department of Chemical and Biological Engineering, Seoul National University) ;
  • Kim, Hyun Su (Department of Chemical and Biological Engineering, Seoul National University) ;
  • Kim, Hyeonjeong (Department of Chemical and Biological Engineering, Seoul National University) ;
  • Shin, Nara (Department of Chemical and Biological Engineering, Seoul National University) ;
  • Yoo, Dongwon (Department of Chemical and Biological Engineering, Seoul National University) ;
  • Kim, Young Gyu (Department of Chemical and Biological Engineering, Seoul National University)
  • 고무현 (서울대학교 화학생물공학부) ;
  • 김현수 (서울대학교 화학생물공학부) ;
  • 김현정 (서울대학교 화학생물공학부) ;
  • 신나라 (서울대학교 화학생물공학부) ;
  • 유동원 (서울대학교 화학생물공학부) ;
  • 김영규 (서울대학교 화학생물공학부)
  • Received : 2012.12.03
  • Accepted : 2012.12.18
  • Published : 2013.03.31

Abstract

We have developed the synthetic processes for the monomers of polyamide-type TPEs (thermoplastic elastomers, TPAEs) obtained from vegetable oil. TPAEs have several superior physical properties to those of thermoplastic elastomers (TPEs). From the common starting material, oleic acid, which is commonly found in various vegetable oils, we have synthesized three ${\omega}$-amino acid monomers ($C_9$, $C_{10}$ and $C_{11}$ ${\omega}$-amino acid) and three ${\alpha}$, ${\omega}$-dicarboxylic acids($C_9$, $C_{10}$ and $C_{11}$ ${\alpha}$, ${\omega}$-dicarboxylic acid) for TPAEs in good yields.

식물성 오일로부터 추출한 물질을 기반으로 하여 열가소성 탄성체(thermoplastic elastomer, TPE) 중에서도 뛰어난 물성을 가진 것으로 잘 알려진 폴리아미드계 TPE(polyamide-type TPE, TPAE)의 단량체 합성공정을 개발하였다. 대다수의 식물성 오일에 함유되어 있는 불포화 지방산으로 잘 알려진 올레인산을 사용하여 TPAE의 단량체 6종($C_9$, $C_{10}$, $C_{11}$ ${\omega}$-amino acid 와 ${\alpha}$, ${\omega}$-dicarboxylic acid)을 좋은 수율로 합성하였다.

Keywords

References

  1. A. Sasmal, D. Sahoo, R. Nanda, P. Nayak, P. L. Nayak, J. K. Mishra, Y. W. Chang, J. Y. Yoon, "Biodegradable Nanocomposites from Maleated Polycaprolactone/Soy Protein Isolate Blend with Organoclay: Preparation, Characterization, and Properties", Polym. Compos., 30, 708 (2009). https://doi.org/10.1002/pc.20653
  2. P. L. Nayak, "Natural Oil-Based Polymers: Opportunities and Challenges", J. Macromol. Sci. Polymer Rev., 40, 1 (2000). https://doi.org/10.1081/MC-100100576
  3. M. Eissen, J. O. Metzger, E. Schmidt, "10 Years after Rio-Concepts on the Contribution of Chemistry to a Sustainable Development", Angew. Chem. Int. Ed., 41, 414 (2002). https://doi.org/10.1002/1521-3773(20020201)41:3<414::AID-ANIE414>3.0.CO;2-N
  4. M. S. Lindblad, Y. Liu, A. Albertsson, E. Ranucci, S. Karlsson, "Polymers from Renewable Resources", Adv. Polym. Sci., 157, 139 (2002). https://doi.org/10.1007/3-540-45734-8_5
  5. A. K. Bhowmick, H. L. Stephens, "Handbook of elastomers", 2nd Ed. p. 417, Marcel Dekker, 2001.
  6. J. G. Drobny, "Handbook of thermoplastic elastomers", p. 306, William Andrew, New York, 2007.
  7. A. Gandini, "Polymers from Renewable Resources: A Challenge for the Future of Macromolecular Materials", Macromolecules, 41, 9491 (2008). https://doi.org/10.1021/ma801735u
  8. U. Biermann, J. O. Metzger, "Catalytic C,C-bond forming additions to unsaturated fatty compounds", Topics Catal., 27, 119 (2004). https://doi.org/10.1023/B:TOCA.0000013546.97468.fa
  9. R. Aelion, "Nylon 6 and Related Polymers", Ind. Eng. Chem., 53, 826 (1961). https://doi.org/10.1021/ie50622a028
  10. F. O. Ayorinde, E. Y. Nana, P. D. Nicely, A. S. Woods, E. O. Price, C. P. Nwaonicha, "Syntheses of 12-Aminododecanoic and 11-Aminoundecanoic Acids from Vernolic Acid", J. Am. Oil Chem. Soc., 74, 531 (1997). https://doi.org/10.1007/s11746-997-0176-z
  11. M. -H. Koh, H. Kim, N. Shin, H. S. Kim, D. Yoo, Y. G. Kim, "Divergent Process for $C_{10}$, $C_{11}$ and $C_{12}$ $\omega$-Amino Acid and $\alpha$,$\omega$-Dicarboxylic Acid Monomers of Polyamides from Castor Oil as a Renewable Resource", Bull. Korean Chem. Soc., 33, 1873 (2012). https://doi.org/10.5012/bkcs.2012.33.6.1873
  12. K. Sisido, Y. Kazama, H. Kodama, H. Nozaki, "Condensation of t-Butyl Esters with Organic Halides in the Presence of Alkali Amides", J. Am. Chem. Soc., 81, 5817 (1959). https://doi.org/10.1021/ja01530a066
  13. A. S. Kalgutkar, B. C. Crews, L. J. Marnett, "Design, Synthesis, and Biochemical Evaluation of N-Substituted Maleimides as Inhibitors of Prostaglandin Endoperoxide Synthases", J. Med. Chem., 39, 1692 (1996). https://doi.org/10.1021/jm950872p
  14. M. Periasamy, C. Narayana, M. Anitha, "A Simple One-Pot Method for Conversion of Terminal Alkenes into Carboxylic Acid via Hydroboration", Indian J. Chem. B, 25, 844 (1986).
  15. B. P. Fabrichnyi, I. F. Shalavina, Y. L. Gol'dfarb, "Synthesis of Amino Acid of Aliphatic Series from Thiophene Derivatives. III. Synthesis of $\omega$-Amino Acid", Zh. Obshch. Khim., 28, 2520 (1958).
  16. M. S. Kharasch, G. Sosnovsky, "Structure of Peroxides Derived from Cyclohexanone and Hydrogen Peroxide", J. Org. Chem., 23, 1322 (1958). https://doi.org/10.1021/jo01103a021
  17. H. Zahn, H. D. Stolper, G. Heidemann, "Cyclo-bis-[$\omega$ -amino-dodecansäure]-amid", Chem. Ber., 98, 3251 (1965) https://doi.org/10.1002/cber.19650981022
  18. J. R. McNesby, Jr. C. A. Heller, "Oxidation of Liquid Aldehydes by Molecular Oxygen", Chem. Rev., 54, 325 (1954). https://doi.org/10.1021/cr60168a004
  19. P. J. Garratt, C. W. Doecke, J. C. Weber, L. A. Paquette, "Intramolecular Anionic Cyclization Route to Capped [3]Perisylanes", J. Org. Chem., 51, 449 (1986). https://doi.org/10.1021/jo00354a006
  20. M. B. Smith, J. March, "March's Advanced Organic Chemistry", 6th Ed. p. 1288, Wiley, New York, 2007.
  21. T. Gross, A. M. Seayad, M. Ahmad, M. Beller, "Synthesis of Primary Amines: First Homogeneously Catalyzed Reductive Amination with Ammonia ", Org. Lett., 4, 2055 (2002). https://doi.org/10.1021/ol0200605
  22. L. C. R. Henry, "Nitro-alcohols", Hebd. Seances. Acad. Sci., 120, 1265 (1895).
  23. F. A. Luzzio, "The Henry Reaction: Recent Examples", Tetrahedron, 57, 915 (2001). https://doi.org/10.1016/S0040-4020(00)00965-0
  24. J. U. Nef, "Constitution of Salts of the Nitro-paraffins", Liebigs Ann. Chem., 280, 263 (1894). https://doi.org/10.1002/jlac.18942800209
  25. Y. Ito, Y. Ohashi, T. Miyagishima, "Synthesis of 2-Deoxy-2-methylamino- D-gulose, a Component of Streptothricin-like Antibiotics", Carbohyd. Res., 9, 125 (1969). https://doi.org/10.1016/S0008-6215(00)82895-5
  26. R. Ballini, M. Petrini, "Recent Synthetic Developments in the Nitro to Carbonyl Conversion (Nef Reaction)", Tetrahedron, 60, 1017 (2004). https://doi.org/10.1016/j.tet.2003.11.016
  27. E. Knoevenagel, "Condensation von Malondiure mitaromatiachen Aldehyden durch Ammoniak und Amine", Chem. Ber., 31, 2596 (1898). https://doi.org/10.1002/cber.18980310308
  28. S. T. Kemme, T. Smejkal, B. Breit, "Combined Transition-Metal- and Organocatalysis: An Atom Economic C3 Homologation of Alkenes to Carbonyl and Carboxylic Compounds", Chem. Eur. J., 16, 3423 (2010). https://doi.org/10.1002/chem.200903223