DOI QR코드

DOI QR Code

연판정 Reed-Solomon 리스트 디코딩을 위한 저복잡도 Interpolation 구조

Area-efficient Interpolation Architecture for Soft-Decision List Decoding of Reed-Solomon Codes

  • Lee, Sungman ;
  • Park, Taegeun (Department of Information, Communication, and Electronic Engineering, The Catholic University of Korea)
  • 투고 : 2012.08.01
  • 발행 : 2013.03.25

초록

Reed-Solomon(RS) 코드는 강력한 에러 정정 능력으로 널리 사용된다. 최근 제안된 RS 코드의 리스트 디코딩 알고리즘은 일반적인 디코더보다 더 큰 디코딩 반경을 가지며 하나 이상의 코드를 찾아낸다. 리스트 디코더는 복잡도가 매우 큰 Interpolation 단계를 포함하며 효율적인 하드웨어 설계가 필요하다. 본 논문에서는 연판정 RS 리스트 디코딩 알고리즘을 위한 효율적인 저복잡도 Interpolation 구조를 제안한다. 제안된 구조는 후보다항식의 Y 차수에 대해서는 병렬로 처리하며 X 차수에 대해서는 직렬로 처리한다. 후보다항식의 처리순서는 계수의 메모리사용의 효율성을 높이기 위하여 적응적으로 결정한다. 따라서 내부 저장공간이 최소화되며 메모리 구조와 접근이 단순해진다. 또한 제안된 구조는 각 모듈의 레이턴시가 유사하고 모듈간 스케쥴링을 최대한 중첩함으로써 높은 하드웨어 효율을 보여준다. 예제로써 (255, 239) RS 리스트 디코더를 설계하였으며 동부하이텍 $0.18{\mu}m$ 표준 셀 라이브러리를 사용하여 합성하여 검증되었고 결과 최대 동작 주파수는 200MHz이고 게이트 수는 25.1K이다.

Reed-Solomon (RS) codes are powerful error-correcting codes used in diverse applications. Recently, algebraic soft-decision decoding algorithm for RS codes that can correct the errors beyond the error correcting bound has been proposed. The algorithm requires very intensive computations for interpolation, therefore an efficient VLSI architecture, which is realizable in hardware with a moderate hardware complexity, is mandatory for various applications. In this paper, we propose an efficient architecture with low hardware complexity for interpolation in soft-decision list decoding of Reed-Solomon codes. The proposed architecture processes the candidate polynomial in such a way that the terms of X degrees are processed in serial and the terms of Y degrees are processed in parallel. The processing order of candidate polynomials adaptively changes to increase the efficiency of memory access for coefficients; this minimizes the internal registers and the number of memory accesses and simplifies the memory structure by combining and storing data in memory. Also, the proposed architecture shows high hardware efficiency, since each module is balanced in terms of latency and the modules are maximally overlapped in schedule. The proposed interpolation architecture for the (255, 239) RS list decoder is designed and synthesized using the DongbuHitek $0.18{\mu}m$ standard cell library, the number of gate counts is 25.1K and the maximum operating frequency is 200 MHz.

키워드

참고문헌

  1. R. E. Blahut, Theory and practice of Error Control Codes, Addison-Wesley, Reading MA, 1983.
  2. M. Sudan, "Decoding of Reed-solomon codes beyond the error correction bound", J. complexity, vol. 12, pp. 180-193, 1997.
  3. V. Guruswami and M. Sudan, "Improved decoding of Reed-Solomon and algebraicgeometric codes", IEEE Trans. Inf. Theory, vol. 45, no. 6, pp. 1755-1764, Sep. 1999.
  4. R. Koetter and A. Vardy, "Algebraic soft-decision decoding of Reed-Solomon codes", IEEE Trans. Inf. Theory, vol. 49, no. 11, pp. 2809-2825, Nov. 2003. https://doi.org/10.1109/TIT.2003.819332
  5. W. J. Gross, F. R. Kschischang, R. Koetter, and P. Gulak, "Simulation results for algebraic soft-decision decoding of Reed-Solomon codes", in Proc. 21st Biennial symp. Commun., pp. 356-360, 2002.
  6. W. J. Gross, F. R. Kschischang, R. Koetter, and P. Gulak, "Applications of algebraic soft-decision decoding of Reed-Solomon codes", IEEE Trans. Commun., vol. 54, no. 7, pp. 1224-1234, Jul. 2006. https://doi.org/10.1109/TCOMM.2006.877972
  7. R. R. Nielson, List decoder of Linear Block Codes, Ph.D thesis, Technical University of Denmark, 2001.
  8. K. Lee and M. O'Sullivan, "An interpolation algorithm using Grobner bases for soft-decision decoding of Reed-Solomon codes", Proc. of ISIT, Seattle, WA, Jul. 2006, pp. 2032-2036
  9. R. Koetter, J. Ma, A. Vardy and A. Ahmed, "Efficient interpolation and factorization in algebraic soft decision decoding of Reed-Solomon codes", Proc. of IEEE Symp. On Info. Theory, 2003
  10. A. Ahmed, R. Koetter, and N. Shanbhag, "VLSI architectures for soft-decision decoding of Reed-Solomon codes", in Proc. ICC, 2004, pp. 2584-2590.
  11. Z. Wang, and J. Ma, "High-speed interpolation architecture for soft-decision decoding of Reed-Solomon codes", IEEE Trans. VLSI systems, vol. 14, no. 9, pp. 937-950, Sep. 2006. https://doi.org/10.1109/TVLSI.2006.884046
  12. W. J. Gross, F. R. Kschischang, and P. Gulak, "Architecture and implementation of an interpolation processor for soft-decision Reed-solomon decoding", IEEE Trans. VLSI systems, vol. 15, no. 3, pp. 309-318, Mar. 2007. https://doi.org/10.1109/TVLSI.2007.893609
  13. G. L. Feng and K. K. Tzeng, "A generalization of the Berlekamp-Massey algorithm for multisequence shift-register synthesis with applications to decoding cyclic codes", IEEE Trans. Inf. Theory, vol. 37, no. 5, pp. 1274-1287, Sep. 1991. https://doi.org/10.1109/18.133246
  14. J. Zhu, X. Zhang, and Z. Wang, "Backward interpolation architecture for algebraic soft-decision Reed-Solomon decoding," IEEE Trans. VLSI systems, vol. 17, no. 11, pp. 1602-1615, Nov. 2009. https://doi.org/10.1109/TVLSI.2008.2005575
  15. X. Zhang and J. Zhu, "High-throughput interpolation architecture for algebraic soft-decision Reed-Solomon decoding," IEEE Trans. Circuits and systems, vol. 57, no. 3, pp. 581-591, Mar. 2010. https://doi.org/10.1109/TCSI.2009.2023935