DOI QR코드

DOI QR Code

The Synthesis and Optical Properties of Silica Coated CdSe/ZnS QDs

실리카가 코팅된 양자점의 코팅두께에 따른 광 특성 변화

  • Lee, Ji-Hye (Nano-IT Materials Lab, Advanced Materials Convergence Division, Korea Institute of Ceramic Engineering and Technology(KICET)) ;
  • Shin, Hyun Ho (Nano-IT Materials Lab, Advanced Materials Convergence Division, Korea Institute of Ceramic Engineering and Technology(KICET)) ;
  • Lee, Jong-Heun (Department of Materials Sience and Engineering, Korea University) ;
  • Hyun, Sang Il (Nano-IT Materials Lab, Advanced Materials Convergence Division, Korea Institute of Ceramic Engineering and Technology(KICET)) ;
  • Koo, Eunhae (Nano-IT Materials Lab, Advanced Materials Convergence Division, Korea Institute of Ceramic Engineering and Technology(KICET))
  • 이지혜 (한국세라믹기술원 기초소재융합본부 나노IT소재팀) ;
  • 신현호 (한국세라믹기술원 기초소재융합본부 나노IT소재팀) ;
  • 이종흔 (고려대학교 신소재공학과) ;
  • 현상일 (한국세라믹기술원 기초소재융합본부 나노IT소재팀) ;
  • 구은회 (한국세라믹기술원 기초소재융합본부 나노IT소재팀)
  • Received : 2012.11.05
  • Accepted : 2013.02.15
  • Published : 2013.03.01

Abstract

The water soluble quantum dots (QDs) are synthesized by the phase transfer and silica coating reaction. The photoluminescence intensity of silica-coated QDs are mainly affected by the amount of phase transfer agent, SDS (sodium dodecyl sulfate), and the maximum value is obtained at the cmc (critical micell concentration) concentration of SDS in the phase transfer reaction. Based on fluorescence spectra and field emission transmission electron microscope (FETEM), the energy transfer rate by forster resonance energy transfer (FRET) is increasing with the thickness of the silica shell coated on CdSe/ZnS QDs.

Keywords

References

  1. X. S. Xie, J. Yu, and W. Y. Yang, Science, 312, 228 (2006). https://doi.org/10.1126/science.1127566
  2. J. Yu, J. Xiao, X. Ren, K. Lao, and X. S. Xie, Science, 311, 1600 (2006). https://doi.org/10.1126/science.1119623
  3. B. Ehdaie, Int. J. Biol. Sci., 3, 108 (2007).
  4. B. N. G. Giepmans, S. R. Adams, M. H. Ellisman, and R. Y. Tsien, Science, 312, 217 (2006). https://doi.org/10.1126/science.1124618
  5. X. Zhao, R. Tapec-Dytioco, and W. Tan, J. Am. Chem. Soc., 125, 11474 (2003). https://doi.org/10.1021/ja0358854
  6. W. C. W. Chan and S. M. Nie, Science, 281, 2016 (1998). https://doi.org/10.1126/science.281.5385.2016
  7. S. Pathak, S. K. Choi, N. Arnheim, and M. E. Thompson, J. Am. Chem. Soc., 123, 4103 (2001). https://doi.org/10.1021/ja0058334
  8. S. Kim and M. G. Bawendi, J. Am. Chem. Soc., 125, 14652 (2003). https://doi.org/10.1021/ja0368094
  9. S. W. Kim, S. Kim, J. B. Tracy, A. Jasanoff, and M. G. Bawendi, J. Am. Chem. Soc., 127, 4556 (2005). https://doi.org/10.1021/ja043577f
  10. M. Darbandi, R. Thomann, and T, Nann, Chem. Mater., 17, 5720 (2005). https://doi.org/10.1021/cm051467h
  11. Y. H. Yang, L. H. Jing, X. L. Yu, D. D. Yan, and M, Y. Gao, Chem. Mater., 19, 4123 (2007). https://doi.org/10.1021/cm070798m
  12. S. T. Selvan, P. K. Patra, C. Y. Ang, and J. Y. Ying, Angew. Chem. Int. Ed., 46, 2448 (2007). https://doi.org/10.1002/anie.200604245
  13. H. Mattoussi, J. M. Mauro, E. R. Goldman, G. P. Anderson, V. C. Sundar, F. V. Milkulec, and M. G. Bawendi, J. Am. Chem. Soc., 122, 12142 (2000). https://doi.org/10.1021/ja002535y
  14. M. Brechez, J. M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, Science, 281, 2013 (1998). https://doi.org/10.1126/science.281.5385.2013
  15. E. R. Goldman, G. P. Anderson, P. T. Tran, H. Mattoussi, P. T. Charles, and J. M. Mauro, Anal. Chem., 274, 841 (2002).
  16. E. R. Goldman, E. D. Balighian, H. Mattoussi, M. K. Kuno, J. M. Mauro, P. T. Tran, and G. P. Anderson, J. Am. Chem. Soc., 122, 6378 (2002).
  17. S. S. Iqbal, M. W. Mayo, J. G. Bruno, B. V. Bronk, C. A. Batt, and J. P. Chambers, Biosens. Bioelect., 15, 549 (2000). https://doi.org/10.1016/S0956-5663(00)00108-1
  18. R. M. De Lorimier, J. J. Smith, M. A. Dwyer, L. L. Looger, K. M. Sali, C. D. Paavola, S. S. Rizk, S. Sadigov, D. W. Conrad, L. Loew, and H. W. Hellinga, Protein Sci, 11, 2655 (2002).
  19. F. W. Scheller, U. Wollenberger, A. Warsinke, and F. Lisdat, Curr. Opin. Biotech., 12, 35 (2001). https://doi.org/10.1016/S0958-1669(00)00169-5
  20. H. W. Hellinga and J. S. Marvin, Trends Biotech., 16, 183 (1998). https://doi.org/10.1016/S0167-7799(98)01174-3
  21. A. Henglein, Chem. Rev., 89, 1861 (1989). https://doi.org/10.1021/cr00098a010
  22. A. P. Alivisatos, Science, 271, 933 (1996). https://doi.org/10.1126/science.271.5251.933
  23. D. S. Lee, J. C. Lee, J. H. Lee, and E. H. Koo, J. Kor. Cerem. Soc., 47, 189 (2010). https://doi.org/10.4191/KCERS.2010.47.2.189
  24. X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, Nature, 404, 59 (2000). https://doi.org/10.1038/35003535
  25. I. L. Medintz, A. R. Clapp, H. Mattoussi, E. R. Goldman, B. Fisher, and J. M. Mauro, Nature Materials, 2, 630 (2003). https://doi.org/10.1038/nmat961