DOI QR코드

DOI QR Code

Effects of KNbO3-Substitution on the Dielectric and Piezoelectric Properties of (Li,Na,K)(Nb,Sb,Ta)O3 System Ceramics

KNbO3 치환이 (Li,Na,K)(Nb,Sb,Ta)O3계 세라믹스의 유전 및 압전 특성에 미치는 영향

  • Noh, Jungrae (Department of Electrical Engineering, Semyung University) ;
  • Yoo, Ju-Hyun (Department of Electrical Engineering, Semyung University) ;
  • Lee, Sang-Don (Department of Electrical Engineering, Gangneung-Wonju National University)
  • 노정래 (세명대학교 전기공학과) ;
  • 류주현 (세명대학교 전기공학과) ;
  • 이상돈 (강릉원주대학교 전기공학과)
  • Received : 2013.01.28
  • Accepted : 2013.02.12
  • Published : 2013.03.01

Abstract

In this study, $KNbO_3$-substituted (Li,Na,K)(Nb,Sb,Ta)$O_3$ ceramics were investigated to develop Pb-free composition ceramics for multilayer actuator and energy harvester applications. The X-ray diffraction analysis indicated that all samples were pure perovskite phase and no secondary phase was found. A tetragonality as a function of $KNbO_3$ substitution showed the maximum value at 1.5 mol% $KNbO_3$ and then decreased. The SEM image analysis showed the maximum grain size of $3.14{\mu}m$ at 1.5mol% $KNbO_3$. In the composition ceramics with 1.5 mol% $KNbO_3$ sintered at $1,100^{\circ}C$, excellent properties of density= 4.75 $g/cm^3$, electromechanical coupling factor ($k_p$)= 0.50 and piezoelectric constant($d_{33}$)= 290 pC/N were obtained, respectively, suitable for piezoelectric actuator and energy harvester applications.

Keywords

References

  1. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nagamura, Nature, 432, 84 (2004). https://doi.org/10.1038/nature03028
  2. Y. Zhao, Y. Zhao, R. Huang, R. Liu, and H. Zhou, J. Am. Ceram. Soc., 94, 656 (2011). https://doi.org/10.1111/j.1551-2916.2010.04353.x
  3. H. Mgbemere, R. Herber, and G. Schneider, J. Eur. Ceram. Soc., 29, 2009 1729. https://doi.org/10.1016/j.jeurceramsoc.2008.10.012
  4. Y. Lee, D. Kim, J. Yoo, I. Kim, J. Song, and J. Hong, J. Kor. Phys. Soc., 22, 489 (2009).
  5. B. Seo and J. Yoo, J. Kor. Phys. Soc., 23, 617 (2010).
  6. Y. Lee, J. Yoo, K. Lee, I. Kim, J. Song, and Y. Park, J. Alloys Comp., 506, 872 (2010). https://doi.org/10.1016/j.jallcom.2010.07.102
  7. D. Kim, J. Yoo, I. Kim, and J. Song, J. Appl. Phys., 105, 061642 (2009). https://doi.org/10.1063/1.3055353
  8. E. Hollenstein, M. Davis, D. Damjanovic, and N. Setter, Appl. Phys. Lett., 87, 3182905 (2005).
  9. Y. Guo, K. Kakimoto, and H. Ohsato, Appl. Phys. Lett., 85, 4121 (2004). https://doi.org/10.1063/1.1813636
  10. H. Wang, X. Zhang, and Y. Dai, Mater. Lett., 67, 145 (2012) https://doi.org/10.1016/j.matlet.2011.09.069
  11. J. Noh and J. Yoo, International Conference on Advenced Electromaterials, FM778 (2011).