DOI QR코드

DOI QR Code

Growth and fatty acid composition of three heterotrophic Chlorella species

  • Kim, Dae Geun (Department of Marine Bio-materials and Aquaculture, Pukyong National University) ;
  • Hur, Sung Bum (Department of Marine Bio-materials and Aquaculture, Pukyong National University)
  • Received : 2013.01.06
  • Accepted : 2013.02.08
  • Published : 2013.03.15

Abstract

Some Chlorella species grow heterotrophically with organic substrate in dark condition. However, heterotrophic Chlorella species are limited and their optimum culture conditions are not fully known. In this study, three heterotrophic Chlorella species, two strains (C4-3 and C4-4) of C. vulgaris and one Chlorella sp. (C4-8) were examined on optimum culture conditions such as carbon source, temperature, and concentrations of nitrogen and phosphorus in Jaworski's medium (JM). And the growth and fatty acid composition of Chlorella were analyzed. For three heterotrophic Chlorella species, glucose (1-2%) as a carbon source only increased the growth and the range of optimum culture temperature was $26-28^{\circ}C$. Doubled concentrations of the nitrogen or phosphorus in JM medium also improved the growth of Chlorella. Chlorella cultured heterotrophically showed significantly higher growth rate and bigger cell size than those autotrophically did. C. vulgaris (C4-3) cultured heterotrophically showed the highest biomass in dry weight ($0.8g\;L^{-1}$) among three species. With respect to fatty acid composition, the contents of C16:0 and n-3 highly unsaturated fatty acid (HUFA) were significantly higher in autotrophic Chlorella than in heterotrophic one and those of total lipid were not different between different concentrations of nitrogen and phosphorus in JM medium. Among three Chlorella species in this study, C. vulgaris (C4-3) appeared to be the most ideal heterotrophic Chlorella species for industrial application since it had a high biomass and lipid content.

Keywords

References

  1. Barclay, W. R., Meager, K. M. & Abril, J. R. 1994. Heterotrophic production of long chain omega-3 fatty acids utilizing algae and algae-like microorganisms. J. Appl. Phycol. 6:123-129. https://doi.org/10.1007/BF02186066
  2. Chen, F. 1996. High cell density culture of microalgae in heterotrophic growth. Trends Biotechnol. 14:421-426. https://doi.org/10.1016/0167-7799(96)10060-3
  3. Chisti, Y. 2007. Biodiesel from microalgae. Biotechnol. Adv. 25:294-306. https://doi.org/10.1016/j.biotechadv.2007.02.001
  4. Choi, Y. E., Yun, Y. -S. & Park, J. M. 2002. Evaluation of factors promoting astaxanthin production by a unicellular green alga, Haematococcus pluvialis, with fractional factorial design. Biotechnol. Prog. 18:1170-1175. https://doi.org/10.1021/bp025549b
  5. De Swaaf, M. E., Pronk, J. T. & Sijtsma, L. 2003a. Fed-batch cultivation of the docosahexaenoic-acid-producing marine alga Crypthecodinium cohnii on ethanol. Appl. Microbiol. Biotechnol. 61:40-43. https://doi.org/10.1007/s00253-002-1118-1
  6. De Swaaf, M. E., Sijtsma, L. & Pronk, J. T. 2003b. High-celldensity fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii. Biotechnol. Bioeng. 81:666-672. https://doi.org/10.1002/bit.10513
  7. Duncan, D. B. 1955. Multiple range and multiple F test. Biometrics 11:1-42. https://doi.org/10.2307/3001478
  8. Grffiths, D. J. 1965. The accumulation of carbohydrate in Chlorella vulgaris under heterotrophic conditions. Ann. Bot. 29:347-357.
  9. Guillard, R. L. 1973. Growth measurement. In Stein, J. R. (Ed.) Handbook of Phycological Methods. Cambridge University Press, London, pp. 302-306.
  10. Hasegawa, T., Okuda, M., Nomoto, K. & Yoshikai, Y. 1994. Augmentation of the resistance against Listeria monocytogenes by oral administration of a hot water extract of Chlorella vulgaris in mice. Immunopharmacol. Immunotoxicol. 16:191-202. https://doi.org/10.3109/08923979409007090
  11. Ip, P. -F. & Chen, F. 2005. Production of astaxanthin by the green microalga Chlorella zofingiensis in the dark. Process Biochem. 40:733-738. https://doi.org/10.1016/j.procbio.2004.01.039
  12. Justo, G. Z., Silva, M. R. & Queiroz, M. L. 2001. Effects of the green algae Chlorella vulgaris on the response of the host hematopoietic system to intraperitoneal ehrlich ascites tumor transplantation in mice. Immunopharmacol. Immunotoxicol. 23:119-132. https://doi.org/10.1081/IPH-100102573
  13. Kim, H. J., Kim, I. H. & Lee, J. H. 2008. Biological activities of ethanol extract from the seawater algae, Chlorella elliposidea C020. Korean J. Biotechnol. Bioeng. 23:125-130.
  14. Kim, J. -S. 2004. Preparation of chlorella drinks and its quality characteristics. Korean J. Food Nutr. 17:382-387.
  15. Lee, Y. -K. 1997. Commercial production of microalgae in the Asia-Pacific rim. J. Appl. Phycol. 9:403-411. https://doi.org/10.1023/A:1007900423275
  16. Lee, Y. -K. 2001. Microalgal mass culture system and methods: their limitation and potential. J. Appl. Phycol. 13:307-315. https://doi.org/10.1023/A:1017560006941
  17. Liu, B. -H. & Lee, Y. -K. 2000. Secondary carotenoids formation by the green alga Chlorococcum sp. J. Appl. Phycol. 12:301-307. https://doi.org/10.1023/A:1008185212724
  18. Miao, X. & Wu, Q. 2004. High yield of bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. J. Biotechnol. 110:85-93. https://doi.org/10.1016/j.jbiotec.2004.01.013
  19. Miao, X., Wu, Q. & Yang, C. 2004. Fast pyrolysis of microalgae to produce renewable fuels. J. Anal. Appl. Pyrolysis. 71:855-863. https://doi.org/10.1016/j.jaap.2003.11.004
  20. Morrison, W. R. & Smith, L. M. 1964. Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol. J. Lipid Res. 5:600-608.
  21. Olaizola, M. 2003. Commercial development of microalgal biotechnology: from the test tube to the marketplace. Biomol. Eng. 20:459-466. https://doi.org/10.1016/S1389-0344(03)00076-5
  22. Ratledge, C. & Wynn, J. P. 2002. The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv. Appl. Microbiol. 51:1-51. https://doi.org/10.1016/S0065-2164(02)51000-5
  23. Shi, X. M., Jiang, Y. & Chen, F. 2002. High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed-batch culture. Biotechnol. Proc. 18:723-727. https://doi.org/10.1021/bp0101987
  24. Shi, X. -M., Liu, H. -J., Zhang, X. -W. & Chen, F. 1999. Production of biomass and lutein by Chlorella protothecoides at various glucose concentrations in heterotrophic cultures. Process Biochem. 34:341-347. https://doi.org/10.1016/S0032-9592(98)00101-0
  25. Thompson, A. S., Rhodes, J. C. & Pettman, I. 1988. Natural Environmental Research Council Culture Collection of algae and protozoa: catalogue of strains. Freshwater Biology Association, Ambleside, 164 pp.
  26. Tripathi, U., Sarada, R. & Ravishankar, G. A. 2002. Effect of culture conditions on growth of green alga: Haematococcus pluvialis and astaxanthin production. Acta Physiol. Plant. 24:323-329. https://doi.org/10.1007/s11738-002-0058-9
  27. Wen, Z. -Y. & Chen, F. 2003. Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnol. Adv. 21:273-294. https://doi.org/10.1016/S0734-9750(03)00051-X
  28. Wu, Z. & Shi, X. 2007. Optimization for high-density cultivation of heterotrophic Chlorella based on a hybrid neural network model. Lett. Appl. Microbiol. 44:13-18. https://doi.org/10.1111/j.1472-765X.2006.02038.x
  29. Xiong, W., Li, X., Xing, J. & Wu, Q. 2008. High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl. Microbiol. Biotechnol. 78:29-36. https://doi.org/10.1007/s00253-007-1285-1
  30. Yokochi, T., Honda, D., Higashihara, T. & Nakahara, T. 1998. Optimization of docosahexaenoic acid production by Schizochytrium limacinum SR21. Appl. Microbiol. Biotechnol. 49:72-76. https://doi.org/10.1007/s002530051139

Cited by

  1. An integrated approach for biodiesel and bioethanol production from Scenedesmus bijugatus cultivated in a vertical tubular photobioreactor vol.101, 2015, https://doi.org/10.1016/j.enconman.2015.06.006
  2. Growth and Nutritional Composition of Eustigmatophyceae Monodus subterraneus and Nannochloropsis oceanica in Autotrophic and Mixotrophic Culture vol.37, pp.1, 2015, https://doi.org/10.4217/OPR.2015.37.1.061
  3. Effect of nitrogen source on growth and lipid accumulation in Scenedesmus abundans and Chlorella ellipsoidea vol.173, 2014, https://doi.org/10.1016/j.biortech.2014.09.038
  4. KMMCC-Korea Marine Microalgae Culture Center: list of strains, 2nd edition vol.30, pp.sup, 2015, https://doi.org/10.4490/algae.2015.30.S.S1
  5. Chlorella vulgaris reduces the impact of stress on hypothalamic–pituitary–adrenal axis and brain c-fos expression vol.65, 2016, https://doi.org/10.1016/j.psyneuen.2015.12.002
  6. Potential assessment of micro algal lipids: A renewable source of energy vol.90, pp.3, 2017, https://doi.org/10.1016/j.joei.2016.03.006
  7. Effects of nitrogen sources on cell growth and biochemical composition of marine chlorophyte Tetraselmis sp. for lipid production vol.31, pp.3, 2016, https://doi.org/10.4490/algae.2016.31.8.18
  8. A new lipid-rich microalga Scenedesmus sp. strain R-16 isolated using Nile red staining: effects of carbon and nitrogen sources and initial pH on the biomass and lipid production vol.6, pp.1, 2013, https://doi.org/10.1186/1754-6834-6-143
  9. Beech wood Fagus sylvatica dilute-acid hydrolysate as a feedstock to support Chlorella sorokiniana biomass, fatty acid and pigment production vol.230, 2017, https://doi.org/10.1016/j.biortech.2017.01.034
  10. Comparative Analyses of Three Chlorella Species in Response to Light and Sugar Reveal Distinctive Lipid Accumulation Patterns in the Microalga C. sorokiniana vol.9, pp.4, 2014, https://doi.org/10.1371/journal.pone.0092460
  11. Effect of Lignocellulose Related Compounds on Microalgae Growth and Product Biosynthesis: A Review vol.7, pp.7, 2014, https://doi.org/10.3390/en7074446
  12. Evaluation of Heterotrophic Algae Meal as a Diet Ingredient for Channel Catfish,Ictalurus punctatus vol.46, pp.4, 2015, https://doi.org/10.1111/jwas.12200
  13. Regulation of Fatty Acid Production and Release in Benthic Algae: Could Parallel Allelopathy Be Explained with Plant Defence Theories? vol.75, pp.3, 2018, https://doi.org/10.1007/s00248-017-1082-z
  14. Utilization of Organic Liquid Fertilizer in Microalgae Cultivation for Biodiesel Production vol.23, pp.4, 2018, https://doi.org/10.1007/s12257-018-0081-3
  15. Microalgae lipid and biomass for biofuel production: A comprehensive review on lipid enhancement strategies and their effects on fatty acid composition vol.97, pp.None, 2013, https://doi.org/10.1016/j.rser.2018.07.050
  16. Characterization of the Growth, Total Lipid and Fatty Acid Profiles in Microalga, Nannochloropsis oceanica under Different Nitrogen Sources vol.47, pp.1, 2013, https://doi.org/10.4014/mbl.1801.01004