DOI QR코드

DOI QR Code

Design of PID Type Fuzzy Logic Acceleration Controller for Turbojet Engine Using High-gain Observer

고이득 관측기를 이용한 터보제트 엔진의 PID 퍼지 추론 가속도 제어기 설계

  • 지민석 (한서대학교 항공전자공학과) ;
  • 김대기 (한서대학교 항공전자공학과) ;
  • 홍교영 (한서대학교 항공전자공학과) ;
  • 안동만 (한서대학교 항공전자공학과) ;
  • 홍승범 (한서대학교 항공전자공학과)
  • Received : 2013.02.02
  • Accepted : 2013.02.28
  • Published : 2013.02.28

Abstract

In this paper, we propose controller to control the acceleration of unmanned aircraft turbojet engine. The high-gain observer to estimate the rotational speed of compressor is used, and the turbojet engine controller applying fuzzy heuristic techniques and PID control algorithm are designed. fuzzy PID controller produces the flow control input to prevent the surge and flame-out phenomena at the acceleration and deceleration of the turbojet engine. The standard acceleration is set and the fuel flow control is defined by the fuzzy heuristic. Computer simulations are performed using MATLAB in order to verify the performance of the proposed controller.

본 논문에서는 무인항공기 터보제트 엔진의 가속도를 제어하는 제어기를 제안한다. 압축기 회전 속도를 추정하기 위해 고이득 관측기를 사용하고 퍼지 추론 기법과 PID 제어 알고리즘을 적용하는 터보제트 엔진 제어기를 설계한다. 터보제트 엔진의 가 감속 시 서지현상과 flame-out 현상을 방지하기 위해 연료 유량 제어 입력을 퍼지 PID 제어기로 생성한다. 기준 가속도를 설정하고 연료유량 제어를 퍼지추론에 의해 정하도록 한다. 제안된 제어기의 성능을 확인하기 위해 MATLAB을 사용한 컴퓨터 시뮬레이션을 수행하였다.

Keywords

References

  1. B. Lehtinen, "Application of advanced control techniques to aircraft propulsion systems," First Annual NASA Aircraft Controls Workshop, Hampton, Virginia, Oct. 1983
  2. R. A. Harrison and M. S. Yates, "Gas Turbine fuel control systems for unmanned applications," J. of Engineering for gas turbines and power.
  3. J.P. Gauthier, H. Hammouri, and S. Othman, "A simple observer for nonlinear systems: Application to Bioreactors", IEEE Trans. on Automat. Contr., vol.37, no. 6, pp.875-880, 1992. https://doi.org/10.1109/9.256352
  4. H.K. Khalil and F. Esfandiari, "Semiglobal stabilization of a class of nonlinear systems using output feed back", IEEE Trans. Automat. Contr., vol. 38, no. 9, pp.1412-1415, 1993. https://doi.org/10.1109/9.237658
  5. Sellers, J.F. and daniele, C. J., "DYGEN A program for calculating steady-state and transient performance of turbojet and turbofan engines", NASA TN D-7901, April 1975.
  6. Geyser, L.C., "DYABCD A program for calculating linear A,B,C,D matrices from a nonlinear dynamic engine simulation", NASA TP-1295, 1978.
  7. Montazeri-Gh, M., Nasiri M., "Actuator-based hardware-in-the-loop testing of a jet engine fuel control unit in flight conditions", Simulation Modelling Practice and Theory, Vol. 21. Issue 1, pp. 65-77, 2012. https://doi.org/10.1016/j.simpat.2011.09.006
  8. M.Montazeri-Gh, H. Yousefpour, and S. Jafari, "Fuzzy logic computing for design of gas turbine engine fuel control system", 2nd International Conference. Computer and Automation Engineering, vol. 5, pp 723-727, 2010.
  9. Ma jing, "Adaptive control of the aircraft turbojet engine based on the neural network", International Conference. Computational Intelligence and Security, vol. 1, pp 937-940, 2006.
  10. Wu Chi-Hua, Fan Ding, Yu Jin-Ven, "Stand test research of fuzzy control theory for speed digital control system in a turbojet engine", International Conference. Power Electronics and Motion Control, vol. 3, pp 1207-1211, 1992.
  11. Seok Che , Young-Seok Oh, "Fuzzy theory and control", Cheongmungak, pp.269-271, 1995.
  12. Byeong-In Jung, "Fuzzy Inference Controller Design of a Turbojet Engine Using High-gain Observer", Hanseo University, pp.22-23, 2012.2.