DOI QR코드

DOI QR Code

Compensation Characteristics of WDM Signals Depending on Dispersion Coefficient of Dispersion Compensating Fiber and Residual Dispersion Per Span

분산 보상 광섬유의 분산 계수와 중계 구간 당 잉여 분산에 따른 WDM 신호의 보상 특성

  • Lee, Seong-Real (Dept. of Marine Inform. & Comm. Eng., Mokpo National Maritime University)
  • 이성렬 (목포해양대학교 해양정보통신공학과)
  • Received : 2012.12.20
  • Accepted : 2013.02.28
  • Published : 2013.02.28

Abstract

The effects of dispersion coefficient of dispersion compensating fiber (DCF) and residual dispersion per span (RDPS) on in the dispersion managed optical links for compensating the distorted 960 Gbps wavelength division multiplexd (WDM) signals due to group velocity dispersion (GVD) and optical nonlinear effects of single mode fiber (SMF) are investigated. It is confirmed that optimal net residual dispersion (NRD), which greatly affects compensating for optical signals, should be induced under the large launch power condition, irrelevant on the considered dispersion coefficient of DCF and RDPS. It is also confirmed that system performances are greatly improved by selecting the very small RDPS and very large dispersion coefficient of DCF.

단일 모드 광섬유의 그룹 속도 분산과 비선형 효과에 의해 왜곡되는 960 Gbps 파장 분할 다중 신호의 보상을 위해 분산 제어 기술이 적용된 광전송 링크에서 분산 보상 광섬유 (DCF; dispersion compensating fiber)의 분산 계수와 중계 구간 당 잉여 분산량 (RDPS; residual dispersion per span)이 왜곡 보상에 미치는 영향을 분석하였다. 우선 왜곡 보상에 큰 영향을 미치는 최적 전체 잉여 분산량 (NRD; net residual dispersion)은 고려한 모든 DCF의 분산 계수와 RDPS에 관계없이 큰 입사 전력에서 구해야 한다는 것을 확인하였다. 중계 구간의 RDPS는 매우 작게, 반면 DCF의 분산 계수는 크게 하여야 시스템 성능이 현저하게 개선되는 것을 확인하였다.

Keywords

References

  1. G. P. Agrawal, Nonlinear fiber optics, Academic Press, 2001.
  2. M.I. Hayee, A.E. Willner, "RZ versus RZ in 10-40-Gb/s dispersion-managed WDM transmission systems," IEEE Photonics Technol. Lett. Vol. 11, pp. 991-993, 1999. https://doi.org/10.1109/68.775323
  3. X. Xiao, S. Gao, Y. Tian, and C. Yang, "Analytical optimization of the net residual dispersion in SPM-limited dispersion-managed systems," J. Lightwave Technol., Vol. 24, No. 5, pp. 2038-2044, May 2006. https://doi.org/10.1109/JLT.2006.872278
  4. J. H. B. Nijhof, N. J. Doran, W. Forgsiak, and A. Berntson, "Energy enhancement of dispersionmanaged solitons and WDM," Electron. Lett., Vol. 34, No. 5, pp. 481-482, 1998. https://doi.org/10.1049/el:19980367
  5. A. Yariv, D. Fekete, and D. M. Pepper, "Compensation for channel dispersion by nonlinear optical phase conjugation", Opt. Lett., Vol. 4, pp 52-54, 1979. https://doi.org/10.1364/OL.4.000052
  6. S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Späalter, G.-D. Khoe, and H. de Waardt, "Long-haul DWDM transmission systems employing optical phase conjugation," IEEE J. Sel. Top. Quant., Vol. 12, No. 4, pp. 505-520, 2006. https://doi.org/10.1109/JSTQE.2006.876621
  7. X. Xiao et al., "Partial compensation of Kerr nonlinearities by optical phase conjugation in optical fiber transmission systems without power symmetry," Opt. Commun., Vol. 265, No. 1, pp. 326-330, 2006. https://doi.org/10.1016/j.optcom.2006.03.007
  8. A. Chowdhury and R.-J.Essiambre, "Optical phase conjugation and pseudolinear transmission," Opt. Lett., Vol. 29, No. 10, pp. 1105-1107, 2004. https://doi.org/10.1364/OL.29.001105
  9. S. R. Lee, "Dispersion managed optical transmission links with optimized optical phase conjugator", International Journal of KIMICS, Vol. 7, No. 3, pp. 372-376, 2009.
  10. A. Farbert, C. Scheerer, J.-P. Elbers, C. Glingener, and G. Fischer, "Optimzed dispersion management scheme for long-haul optical communication systems," Electron. Lett., Vol. 35, No. 21, pp. 1865 -1866, Oct. 1999. https://doi.org/10.1049/el:19991237
  11. L. Gruner-Nielsen, M. Wandel, P. Kristensen, C. Jorgensen, L. V. Jorgensen, B. Edvold, B. Pálsdóttir, and D. Jakobsen, "Dispersion-compensating fibers", J. Lightwave Technol., Vol. 23, No. 11, pp. 3566-3579, 2005. https://doi.org/10.1109/JLT.2005.855873