DOI QR코드

DOI QR Code

Optimal Algorithm for Transshipment Problem

중개수송 문제 최적 알고리즘

  • Lee, Sang-Un (Dept. of Multimedia Engineering, Gangnung-Wonju National University Wonju Campus) ;
  • Choi, Myeong-Bok (Dept. of Multimedia Engineering, Gangnung-Wonju National University Wonju Campus)
  • 이상운 (강릉원주대학교, 멀티미디어공학과) ;
  • 최명복 (강릉원주대학교, 멀티미디어공학과)
  • Received : 2012.10.06
  • Accepted : 2013.02.08
  • Published : 2013.02.28

Abstract

This paper proposes the most simple method for optimal solution of the transshipment problem. Usually the transshipment problem is solved by direct linear programming or TSM (Transportation Simplex Method). The method using TSM has two steps. First it is to get a initial solution using NCM, LCM, or VAM, second to refine the initial solution using MOD or SSM. However the steps is complex and difficult. The proposed method applies the method that transforms transshipment problem to transportation problem. In the proposed method it simply selects the minimum cost of rows about transportation problem, and then it applies the method that assigns a transported volume as an ascending sort of the costs of rows about the selected costs. Our method makes to be very fast got the initial value. Also we uses the method that controls assignment volume, if a heavy item of cost is assigned to a transported volume and it has a condition to be able to transform to more lower cost. The proposed algorithm simply got the optimal solution with applying to 11 transshipment problem.

본 논문은 중개수송 문제의 최적 해를 찾는 가장 단순한 방법을 제안하였다. 중개 수송문제는 직접 선형계획법이나 TSM을 적용하거나 일반적인 수송문제로 변환시켜 TSM을 적용하여 최적해를 구한다. 그러나 TSM을 적용하여 최적해를 구하기 위해서는 초기해를 구하고 해 개선 과정을 거치는 방법이 어렵다. 초기해를 구하기 위해서는 NCM, LCM이나 VAM을 적용하며, 해 개선을 위해서는 MODI나 SSM을 적용한다. 본 논문은 중개수송 문제를 수송문제로 변환시키는 방법을 적용하였다. 수송문제에 대해서는 단순히 열의 최소 비용을 선택하고, 선택된 비용들에 대해 행의 비용 오름차순으로 수송량을 배정하는 방법을 적용하여 초기해를 빠르게 배정할 수 있었다. 해 개선은 보다 큰 비용에 수송량이 배정된 경우 보다 작은 비용으로 변경할 수 있는 조건을 만족하면 배정량을 조정하는 방법을 적용하였다. 제안된 방법을 11개의 다양한 중개수송 문제에 적용한 결과 10개 문제는 초기 배정만으로 최적해를 구할 수 있었으며, 단지 2개 문제만이 해 개선과정을 1개의 비용만 변경하여 최적해를 구할 수 있었다. 따라서 제안된 방법은 중개수송 문제에 대해 가장 간단한 최적해 방법으로 적용할 수 있을 것이다.

Keywords

References

  1. Wikipedia, "Transportation Problem," http://en. wikipedia.org/wiki/Transportation_problem, Wikimedia Foundation Inc., 2008.
  2. W. L. Winston, J. B. Goldberg, and M. Venkataramanan, "Introduction to Mathematical Programming: Operations Research," Vol. 1, 4th edition, Duxbury Pr, 2003.
  3. L. Ntaimo, "Transportation and Assignment Problems," http://ie.tamu.edu/INEN420_2005Spring/ SLIDES/Chapter 7.pdf, 2005.
  4. S. C. Niu, "Introduction to Operations Research," http:// www.utdallas.edu/-scniu/OPRE-6201/documents/ TP2-Initialization.pdf, School of Management, The University of Texas at Dallas, 2004.
  5. J. Loucks, "Quantitative Approaches to Decision Making," Anderson Sweeney Williams, 2005.
  6. G. B. Dantzig, "Linear Programming and Extensions," USAF Project RAND, R-366-PR, The RAND Corporation, Santa Monica, California, U.S., https://www.rand.org/pubs/reports/2007/R366part2.pdf, 1963.
  7. J. G, Kang, "Operations Research," http://secom. hanbat.ac.kr/or/ch06/right04.html, Hanbat National University, 2006.
  8. M. E. Salassi, "Agricultural Economics & Agribusiness," Louisiana State University, 2004.
  9. J. Havlicek, "Distance Learning Module for Management Science," http://orms.czu.cz/text/ transproblem.html, Czech University of Agriculturee, 2008.
  10. J. E. Beasley, "Operations Research and Management Science: OR-Notes," Department of Mathematical Sciences, Brunel University, West London, http://people.brunel.ac.uk/-mastjjb/jeb/or/contents.html, 2004.
  11. S. Mitchell and A. Phillips, "Optimisation with PULP WIKI," Department of Engineering Science, The University of Auckland, 2008.
  12. J. Hill, "Linear Programming Problem Example," MERCER MBA, BAM 622, http://mercermba.com/ April 14 BAM 622 Notes.pdf, 2008.
  13. J. Jensen, "MBA 675: Production and Operations Management," Management Science, University Southern Maine, 2005.
  14. G. Giallombardo, "3E4-Modeling Choice," Judge Institute of Management, Department of Engineering, University of Cambridge, 2006.
  15. Sang-Un Lee, "A Reverse-Delete Algorithm for Assignment Problems," Journal of Advanced Information Technology and Convergence, pp. 117-126, vol. 10, no. 8, 2012. 8.