DOI QR코드

DOI QR Code

국부 통계 특성 및 노이즈 예측을 통한 적응 노이즈 검출 및 제거 방식

Adaptive Noise Detection and Removal Algorithm Using Local Statistics and Noise Estimation

  • 응웬 뚜안안 (숭실대학교 정보통신전자공학부) ;
  • 김범수 (숭실대학교 정보통신전자공학부) ;
  • 홍민철 (숭실대학교 정보통신전자공학부)
  • 투고 : 2013.01.11
  • 심사 : 2013.02.15
  • 발행 : 2013.02.28

초록

본 논문에서는 첨부 노이즈에 의해 훼손된 왜곡 영상의 공간 적응적 노이즈 검출 및 제거 기법에 대해 제안한다. 일반적인 영상이 가우시안 분포 특성을 갖는다는 가정 하에 왜곡 영상으로부터 국부 통계 특성을 산출하여 첨부 노이즈 정보를 예측하고, 예측된 노이즈 정보의 통계 특성을 활용하여 첨부 노이즈 정도를 분류하는 기법에 대해 제안한다. 더불어, 노이즈 분류에 따라 보정된 가우시안 필터의 매개변수 및 필터 윈도우 크기를 설정한 적응 노이즈 필터 기법에 대해 기술한다. 실험 결과를 통해 제안 방식의 성능이 기존 방식과 비교하여 객관적, 주관적으로 우수한 능력을 갖고 있음을 확인할 수 있었다.

In this paper, we propose a spatially adaptive noise detection and removal algorithm for a single degraded image. Under the assumption that an observed image is Gaussian-distributed, the noise information is estimated by local statistics of degraded image, and the degree of the additive noise is detected by the local statistics of the estimated noise. In addition, we describe a noise removal method taking a modified Gaussian filter which is adaptively determined by filter parameters and window size. The experimental results demonstrate the capability of the proposed algorithm.

키워드

참고문헌

  1. R. C. Gonzalez and R. E. Wood, Digital Image Processing. Englewood Cliffs, NJ: Prentice-Hall, 2002.
  2. T. A. Nodes, N. C. Gallagher, "Median filters: Some modifications and their Properties," IEEE Trans. Acoust., Speech and Sig. Process., vol. ASSP-30, no. 5, pp. 739-746, Oct. 1982.
  3. G. R. Arce, Nonlinear Signal Processing - A Statistical Approach, Wiley, 2004.
  4. D. Brownrigg, "The weighted median filter," Communication of the ACM, vol. 27, no. 8, pp. 807-818, Aug. 1984. https://doi.org/10.1145/358198.358222
  5. S. J. Ko and S. J. Lee, "Center weighted median filters and their applications to image enhancement," IEEE Trans. Circ. Sys, vol. 15, no. 4, pp. 984-993, Sep. 1991.
  6. C. Tomasi and R. Manduchi, "Bilateral filtering for gray and color images," in Proc. IEEE Int. Conf. on Computer Vision (ICCV), pp. 839-846, Jan. 1998.
  7. X. Zhang and Y. Xiong, "Impulse noise removal using directional difference based noise detector and adaptive weighted mean filter," IEEE Signal Proc. Let., vol. 16, no. 4, pp. 295-298, Apr. 2009. https://doi.org/10.1109/LSP.2009.2014293
  8. J. H. Lee, Y. H. Kim, and J. H. Nam, "Adaptive noise reduction algorithm based on statistical hypotheses tests," IEEE Trans. Consum. Electr., vol. 54, no. 3, pp. 1406-1414, Aug. 2008. https://doi.org/10.1109/TCE.2008.4637634
  9. V. R. Vijaykumar, P. T. Vanathi, P. Kanagasabapathy, "Fast and efficient algorithm to remove Gaussian noise in digital images," IAENG Int. J. of Comp. Sci., vol. 37, no. 1, pp. 300-302, Sep. 2010.
  10. W.-S. Song, T.-A. Nguyen, and M.-C. Hong, "An adaptive noise removal method using local statistics and generalized Gaussian filter," J. KICS, vol. 35, no. 1, pp. 17-23, Jan. 2009.
  11. S. I. Olsen, "Noise variance estimation in images: An evaluation," Comp. Vision Graphics Image Process., vol. 55, no. 4, pp. 319-323, April 1993.
  12. D. H. Shin, R. H. Park, S. J. Yang, "Block-based noise estimation using adaptive Gaussian filtering," IEEE Trans. Consum. Electr., vol. 51, no. 1, pp. 218-226, Feb. 2005. https://doi.org/10.1109/TCE.2005.1405723
  13. G. L. Anderson and A. K. Netravali, "Image restoration based on a subjective criterion," IEEE Trans. Sys. Man. and Cybern, vol. 6, no. 12, pp. 845-853, Dec. 1976. https://doi.org/10.1109/TSMC.1976.4309481
  14. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image quality assesment: from error visibility to structural similarity," IEEE Trans. Image Process., vol. 13, no. 4, pp. 600-612, Apr. 2004. https://doi.org/10.1109/TIP.2003.819861