DOI QR코드

DOI QR Code

Optimal Design of New Magnetorheological Mount for Diesel Engines of Ships

선박용 디젤엔진을 위한 새로운 MR 마운트의 최적설계

  • Do, Xuan-Phu (Department of Mechanical Engineering, Inha University) ;
  • Park, Joon-Hee (Department of Mechanical Engineering, Inha University) ;
  • Woo, Jae-Kwan (Department of Mechanical Engineering, Inha University) ;
  • Choi, Seung-Bok (Department of Mechanical Engineering, Inha University)
  • Received : 2012.09.13
  • Accepted : 2012.12.11
  • Published : 2013.03.20

Abstract

This paper presents an optimal design of a magnetorheological(MR) fluid-based mount(MR mount) that can be used for to vibration control in diesel engines of ships. In this work, a mount that uses mixed-modes(squeeze mode, flow mode, and shear mode) is proposed and designed. To determine the actuating damping force of the MR mount required for efficient vibration control, the excitation force from a diesel engine is analyzed. In this analysis, a model of a V-type engine is considered. The relationship between the velocity and pressure of gas in terms of the torque acting on the piston is derived. Subsequently, by integrating the field-dependent rheological properties of commercially available MR fluid with the excitation force, the appropriate size of the MR mount is designed. In addition, to achieve the maximum actuating force under geometric constraints, design optimization is undertaken using the ANSYS parametric design language software. Through magnetic density analysis, optimal design parameters such as the bottom gap and radius of coil are determined.

이 논문은 선박용 디젤엔진의 진동제어에 적용할 수 있는 MR 유체기반 마운트(MR 마운트)의 최적설계를 제시한다. 이 연구에서는 압착모드, 유동모드, 전단모드를 포함하는 혼합모드가 제안되었고 설계되었다. 효과적인 진동제어를 위하여 요구되는 MR 마운트의 작동 댐핑력을 결정하기 위하여 디젤엔진의 기진력이 분석되었다. 이 분석에서 V-type엔진이 고려되었으며 피스톤의 토크에서의 속도와 가스압력간의 관계를 유도하였다. 결과적으로 상업적으로 이용 가능한 MR 유체의 장의존적 유동특성과 기진력을 통합함으로써 적절한 MR 마운트의 크기가 설계되었다. 게다가 기하학적 제한조건이 고려된 최대 구동력을 얻기 위해 ANSYS를 이용하여 최적설계가 수행되었다. 자기밀도분석을 통해 바닥간격과 코일의 반지름과 같은 최적설계변수가 결정되었다.

Keywords

References

  1. Nguyen, Q. H., Choi, S. B., Lee, Y. S. and Han, M. A., 2009, An Analytical Method for Optimal Design of MR Valve Structures, Smart Materials & Structures, Vol. 18, No. 9, pp. 1-12.
  2. Brigley, M. J., 2006, A Multi-mode Magnetorheological Axial Isolator, Thesis of Master of Science, University of Maryland, USA.
  3. Frank M. White, Fluid Mechanics, 2006, Fourth Edition, Mc-Graw Hill, New York.
  4. Nguyen, Q. H. and Choi, S. B., 2010, Optimal Design of an Automotive Magnetorheological Brake Considering Reometric Dimensions and Zero-field Friction Heat, Smart Materials and Structures, Vol. 19, N. 11, pp. 1-11.
  5. Khurmi, R. S. and Gupta J. P., 2008, Theory of Machines, Eurasia Publishing House.
  6. Park, J. G., Jeong, W. B. and Seo, Y. S., 2002, Optimal Design of Crank Angles for Reducing the Excitation Forces in a Diesel Engine, Transactions of the Korean Society for Noise and Vibration Engineering, Vol. 12, No. 2, pp. 108-115. https://doi.org/10.5050/KSNVN.2002.12.2.108
  7. Huyndai Heavy Industries Co. ltd, 2012, Vibration of Marine Diesel Engine.
  8. Yang, G., Spencer, B. F., Jung, H. J. and Carlson, J. D., 2009, Dynamic Modeling of Large-scale Magneto-rheological Damper System for Civil Engineering Applications, Journal of Engineering Mechanics, Vol. 130, No. 9, pp. 1107-1114.
  9. Yang, G., Spencer, B. F., Carlson, J. D. and Sain, M. K., 2002, Large-scale MR Fluid Dampers: Modeling and Dynamic Performance Considerations, Engineering Structures, Vol. 24, pp. 309-323. https://doi.org/10.1016/S0141-0296(01)00097-9
  10. Choi, S. B., Hong, S. R., Sung, K. G. and Sohn, J. W., 2008, Optimal Control of Structural Vibrations Using a Mixed-mode Magnetorheological Fluid Mount, International Journal of Mechanical Sciences, Vol. 50, No. 3, pp. 559-568. https://doi.org/10.1016/j.ijmecsci.2007.08.001
  11. Bass, B. J. and Christenson, R. E., 2007, System Identification of a 200 kN Magnetorheological Fluid Damper for Structural Control in Large-scale Smart Structures, Proceedings of the 2007 American Control Conference, pp. 2690-2695.
  12. Hong, S. R., Choi, S. B. and Lee, D. Y., 2006, Comparison of Vibration Control Performance Between Flow and Squeeze Mode ER Mounts: Experimental Work, Journal of Sound and Vibration, Vol. 291, pp. 740-748. https://doi.org/10.1016/j.jsv.2005.06.037
  13. Hong, S. R., Choi, S. B., Choi, Y. T. and Wereley, N. M., 2005, Non-dimensional Analysis and Design of a Magnetorheological Damper, Journal of Sound and Vibration, Vol. 288, pp. 847-863. https://doi.org/10.1016/j.jsv.2005.01.049
  14. Hong, S. R., Wereley, N. M., Choi, Y. T. and Choi, S. B., 2008, Analytical and Experimental Validation of a Nondimensional Bingham Model for Mixed-mode Magneto-rheological Dampers, Journal of Sound and Vibration, Vol. 312, pp. 399-417. https://doi.org/10.1016/j.jsv.2007.07.087
  15. Spencer, B. F., Yang, G., Carlson, J. D. and Sain, M. K., 1998, Smart Dampers for Seismic Protection of Structures:a Full-scale Study, The Second World Conference on Structural Control, Kyoto, Japan.
  16. Farjoud, A., Craft, M., Burke, W. And Ahmadian, M., 2011, Experimental Investigation of MR Squeeze Mounts, Journal of Intelligent Material Systems and Structures, Vol. 22, pp. 1645-1651. https://doi.org/10.1177/1045389X11411225
  17. Zhang, X. J., Farjoud, A., Ahmadian, M., Guo, K. H. and Craft, M., 2011, Dynamic Testing and Modeling of an MR Squeeze Mount, Journal of Intelligent Material Systems and Structures, Vol. 22, No. 15, pp. 1717-1728. https://doi.org/10.1177/1045389X11424217
  18. Goldasz, J. and Sapinski, B., 2011, Modeling of Magneto-rheological Mounts in Various Operating Modes, Acta Mechanica et Automatica, Vol. 5, No. 4, pp. 29-39.
  19. Popp, K. M., Zhang, X. Z., Li, W. H. and Kosasih, P. B., 2009, MRE Properties under Shear and Squeeze Modes and Applications, Journal of Intelligent Material Systems and Structures, Vol. 21, No. 15, pp. 1471-1477.
  20. Kuzhir, P., Lopez-Lopez, M. T., Vertelov, G., Pradille, C. and Bossis, G., Oscillatory Squeeze Flow of Suspensions of Magnetic Polymerized Chains, Journal of Physics: Condensed Matter, Vol. 20, No. 20, pp. 1-5.

Cited by

  1. vol.17, pp.2, 2014, https://doi.org/10.5293/kfma.2014.17.2.073
  2. Vibration transmission analysis of nonlinear floating raft isolation system with magneto-rheological damper pp.2048-4046, 2018, https://doi.org/10.1177/1461348418756027