Abstract
This paper proposes an efficient integration method for GPS (Global Positioning System) and INS (Inertial Navigation System). To obtain accuracy and computational conveniency at the same time with low cost global positioning system receivers and micro mechanical inertial sensors, a new mechanization method and a new filter architecture are proposed. The proposed mechanization method simplifies velocity and attitude computation by eliminating the need to compute complex transport rate related to the locally-level frame which continuously changes due to unpredictable vehicle motions. The proposed filter architecture adopts two heterogeneous filters, i.e. position-domain Hatch filter and velocity-aided Kalman filter. Due to distict characteristics of the two filters and the distribution of computation into the two hetegrogeneous filters, it eliminates the cascaded filter problem of the conventional loosly-coupled integration method and mitigates the computational burden of the conventional tightly-coupled integration method. An experiment result with field-collected measurements verifies the feasibility of the proposed method.