DOI QR코드

DOI QR Code

비드와 나선형 공진기를 이용한 전원 노이즈 저감 방안 연구

Power Noise Suppression Methods Using Bead with Spiral Resonator

  • 정동호 (연세대학교 전기전자공학과) ;
  • 강희도 (연세대학교 전기전자공학과) ;
  • 육종관 (연세대학교 전기전자공학과)
  • Chung, Tong-Ho (Department of Electrical and Electronic Engineering, Yonsei University) ;
  • Kang, Hee-Do (Department of Electrical and Electronic Engineering, Yonsei University) ;
  • Yook, Jong-Gwan (Department of Electrical and Electronic Engineering, Yonsei University)
  • 투고 : 2012.11.26
  • 심사 : 2013.02.13
  • 발행 : 2013.02.28

초록

본 연구에서는 동시 스위칭에 의한 잡음 저감을 위하여 일반적으로 사용하는 비드와 더불어 나선형 공진기를 함께 사용하여 보다 향상된 광대역의 잡음 저감 특성을 확보하였다. 비드는 기본체배 주파수 아래 대역인 0.8 GHz 이내에서 효과적으로 잡음이 저감되고, 공진기는 공진기 턴 길이에 반비례한 공진 주파수 이내까지 잡음을 잘 저감할 수 있었다. 이것을 바탕으로 비드와 공진기를 함께 사용하면 각 주파수 영역에서 임피던스가 높은 성분에 의하여 영향을 받아 보다 광대역의 동시 스위칭에 의한 잡음 저감 특성을 얻을 수 있다. 22 nH 비드만을 사용한 경우 1, 2, 3, 그리고 4체배에서 각각 4.8, 2.0, 0, 0.6 dB의 노이즈 저감 특성을 얻었으나, 22 nH의 비드와 3턴 공진기를 함께 사용할 경우 9.5, 8.3, 6.1, 9.9 dB의 광대역에 걸친 잡음 감소 특성을 얻을 수 있었다. 비드가 없는 경우와 비교하여 22 nH 비드를 사용하면 전원단 흔들림이 76 mV에서 56 mV로 감소하고, 비드와 3턴 공진기를 함께 사용하면 34 mV로 감소함을 볼 수 있다. 즉, 비드와 공진기를 동시에 사용함으로써 보다 광대역의 동시 스위칭에 의한 잡음 저감 특성을 확보함을 보였다.

In this paper, to the aim of wideband SSN(Simultaneous Switching Noise) suppression characteristic, investigation of spiral resonator are used in conjunction with bead which is commonly used for noise suppression method. Bead works effectively to suppress the power noise up to the first harmonic of fundamental frequency, 0.8 GHz, and spiral resonator suppress noise well in the frequency range of SRF(Self Resonance Frequency) which is inversely proportional to the length of spiral. Thus, when bead used in conjunction with a spiral the noise suppression characteristic is determined by the one of higher impedance element of the two in the frequency range and achieves more broadband filtering characteristic. The case for using 22 nH bead turns out 4.8, 2.0, 0, and, 0.6 dB, and the case for using 22 nH bead in conjunction with 3-turns spiral achieves more wideband characteristic of 9.5, 8.3, 6.1, and 9.9 dB power noise suppression performances at the first, second, third, and fourth harmonics, respectively. The peak-to-peak voltage levels decrease from 76 mV to 56 mV using 22 nH bead, and the level decrease rapidly to 34 mV when using in conjunction with bead and 3-turn spiral. Thus more wideband SSN suppression characteristic can be achieved using bead with spiral.

키워드

참고문헌

  1. T. L. Wu, Y. H. Lin, T. K. Wang, C. C. Wang, and S.T. Chen, "Electromagnetic bandgap power/ground planes for wideband suppression of ground bounce noise and radiated emission in high-speed circuits", IEEE Trans. on Microwave Theory and Tech., vol. 53, no. 9, pp. 2935-2942, Sep. 2005. https://doi.org/10.1109/TMTT.2005.854248
  2. S. S. Oh, J. M. Kim, and J. G. Yook, "Enhanced power plane with photonic bandgap structures for wideband suppression of parallel plate resonances", IEEE International Symposium on Antennas and Propagation, vol. 2B, pp. 655-658, Jul. 2005.
  3. J. K. Du, "An effective suppression methodology of the simultaneous switching noise in multilayer high performance printed circuit boards", Ms. thesis, Yonsei university, Seoul, Korea, 2007.
  4. H. D. Kang, H. Kim, S. G. Kim, and J. G. Yook, "A localized enhanced power plane topology for wideband suppression of simultaneous swithching noise", IEEE Trans. on Electromagn. Compat., vol. 52, no. 2, pp. 373-380, May 2010. https://doi.org/10.1109/TEMC.2010.2044415
  5. T. H Chung, H. D. Kang, and J. G. Yook, "Power noise suppression techniques using spiral resonator in high-speed PCB", IEEE Electrical Design of Advanced Packaging and Systems, 2010.
  6. T. H Chung, J. G. Yook, "Noise suppression methods using spiral with PGS in PCB", Aceepted in IEICE Electron, Jan. 2013.
  7. T. H Chung, H. D. Kang, T. L. Sang, and J. G. Yook, "Broadband equivalent circuit modeling of circuit_shaped spiral resonator for PCB application", Microwave and Optical Technology Letters, vol. 55, no. 2, pp. 337-340, 2012.
  8. S. H. Hall, G. W. Hall, and J. A. McCall, High- Speed Digital System Design: A Handbook of Inter- Connect Thoery and Design Practices, John Wiley & Sons, 2000.
  9. J. R. Long, M. A. Copeland, "The modeling, characterization, and design of monolithic inductors for silicon RF ICs", IEEE J. Solid-State Circuits, vol. 32, pp. 357-369, Mar. 1997. https://doi.org/10.1109/4.557634
  10. Y. K. Koutsoyannopoulos, Y. Papananos, "Systematic analysis and modeling of integrated inductors and transformers in RFIC design", IEEE Trans. Circuits Syst. II, vol. 47, no. 8, pp. 699-713, Aug. 2000. https://doi.org/10.1109/82.861403
  11. T. S. Horng, J. M. Wu, L. Q. Yang, and S. T. Fang, "A novel modified-T equivalent circuit for modeling LTCC embedded inductors with a large bandwidth", IEEE Trans. on Microwave Theory and Tech., vol. 51, no. 12, pp. 2327-2333, 2003. https://doi.org/10.1109/TMTT.2003.819772
  12. T. H. Chung, H. D. Kang, T. L. Song, and J. G. Yook, "A noise suppression technique using dual layer spirals with various ground structure for high- speed PCBs", Progress In Electromagnetics Research B, vol. 46, 337-356, 2013. https://doi.org/10.2528/PIERB12102904

피인용 문헌

  1. Recent Trends in System-Level EMC Investigation and Countermeasure Technology for RF Interference Due to High-Speed Digital System Noise vol.25, pp.10, 2014, https://doi.org/10.5515/KJKIEES.2014.25.10.966