DOI QR코드

DOI QR Code

An Integrated Biological Control Using an Endoparasitoid Wasp (Cotesia plutellae) and a Microbial Insecticide (Bacillus thuringiensis) against the Diamondback Moth, Plutella xylostella

배추좀나방에 대한 프루텔고치벌과 미생물농약의 통합생물방제

  • Kim, Kyusoon (Major in Plant Medicals, School of Bioresource Sciences, Andong National University) ;
  • Kim, Hyun (Major in Plant Medicals, School of Bioresource Sciences, Andong National University) ;
  • Park, Young-Uk (Department of Plant Medicine, Chungbook National University) ;
  • Kim, Gil-Hah (Department of Plant Medicine, Chungbook National University) ;
  • Kim, Yonggyun (Major in Plant Medicals, School of Bioresource Sciences, Andong National University)
  • 김규순 (안동대학교 생명자원과학부 식물의학전공) ;
  • 김현 (안동대학교 생명자원과학부 식물의학전공) ;
  • 박영욱 (충북대학교 식물의학과) ;
  • 김길하 (충북대학교 식물의학과) ;
  • 김용균 (안동대학교 생명자원과학부 식물의학전공)
  • Received : 2012.11.30
  • Accepted : 2013.01.28
  • Published : 2013.03.01

Abstract

All tested Korean populations of the diamondback moth, Plutella xylostella, are known to be resistant especially against pyrethroid insecticides by mutation in its molecular target, para-sodium channel. Moreover, P. xylostella is able to develop resistance against most commercial insecticides. This study was performed to develop an efficient control technique against P. xylostella by a combined treatment of an endoparasitoid wasp, Cotesia plutellae, and a microbial insecticide, Bacillus thuringiensis. To investigate any parasitism preference of C. plutellae against susceptible and resistant P. xylostella, five different populations of P. xylostella were compared in insecticide susceptibilities and parasitism by C. plutellae. These five P. xylostella populations showed a significant variation against three commercial insecticides including pyrethroid, organophosphate, neonicotinoid, and insect growth regulator. However, there were no significant differences among five P. xylostella populations in their parasitic rates by C. plutellae. Moreover, parasitized larvae of P. xylostella showed significantly higher susceptibility to B. thuringiensis. As an immunosuppressive agent, viral ankyrin genes (vankyrins) encoded in C. plutellae were transiently expressed in nonparasitized larvae. Expression of vankyrins significantly enhanced the efficacy of B. thuringiensis against the third instar larvae of P. xylostella. Thus an immunosuppression induced by C. plutellae enhanced the insecticidal efficacy of B. thuringiensis. These results suggest that a combined treatment of C. plutellae and B. thuringiensis may effectively control the insecticide-resistant populations of P. xylostella.

국내 배추좀나방(Plutella xylostella) 집단은 피레스로이드 농약에 대해서 저항성을 보이며, 이는 이 살충제의 작용점인 소듐이온채널 유전자의 돌연변이에 기인된다. 더욱이 배추좀나방은 대부분 상용화된 살충제에 대해서 저항성을 발달시킬 수 있다. 본 연구는 배추좀나방을 효과적으로 방제하기 위해 내부기생성 천적인 프루텔고치벌(Cotesia plutellae)과 미생물농약인 Bacillus thuringiensis의 혼합처리 기술을 개발하기 위해 수행되었다. 프루텔고치벌이 감수성과 저항성 배추좀나방에 대한 기생 선호성에 차등이 있는 지 조사하기 위해 다섯 개 서로 다른 집단에 대해서 살충제 감수성과 프루텔고치벌 기생성 차이를 비교하였다. 이들 배추좀나방 집단들은 피레스로이드, 유기인계, 네오니코틴계 및 곤충성장조절제를 포함하는 세 종류의 상용 살충제에 대한 약제 감수성에서 뚜렷한 차이를 보였다. 그러나 이들 집단들은 프루텔고치벌에 의한 기생률에서는 차이를 보이지 않았다. 더욱이 기생된 배추좀나방은 B. thuringiensis에 대해서 감수성이 증가되었다. 프루텔고치벌이 갖는 면역억제인자 가운데 바이러스 유래 ankyrin 유전자(vankyrin)를 비기생된 배추좀나방에 발현시켰다. Vankyrin의 발현은 배추좀나방 3령충의 B. thuringiensis에 대한 감수성을 현격하게 증가시켰다. 즉, 프루텔고치벌에 의해 야기된 면역저하가 B. thuringiensis의 살충력을 증가시켰다. 이러한 결과들은 프루텔고치벌과 미생물농약인 B. thuringiensis의 혼합처리가 살충제 저항성 배추좀나방을 효과적으로 방제할 수 있다고 제시하고 있다.

Keywords

References

  1. Bae, S., Kim, Y., 2004. Host physiological changes due to parasitism of a braconid wasp, Cotesia plutellae, on diamondback moth Plutella xylostella. Comp. Biochem. Physiol. A 138, 39-44. https://doi.org/10.1016/j.cbpb.2004.02.018
  2. Bae, S., Kim, Y., 2009. IkB genes encoded in Cotesia plutellae bracovirus suppress an antiviral response and enhance baculovirus pathogenicity against the diamondback moth, Plutella xylostella. J. Invertebr. Pathol. 102, 79-87. https://doi.org/10.1016/j.jip.2009.06.007
  3. Beg, A.A., Baldwin, A.S., 1993. The $I{\kappa}B$ proteins: multifunctional regulators of $Rel/NF-_{\kappa}$B transcription factors. Genes Dev. 7, 2064-2070. https://doi.org/10.1101/gad.7.11.2064
  4. Burke, J.R., Wood, M.K., Ryseck, R.P., Walther, S., Meyers, C.A., 1999. Peptides corresponding to the N and C termini of $I{\kappa}B-{\alpha}$, $-{\beta}$, and $-{\varepsilon}$ as probes of the two catalytic subunits of $I{\kappa}B$ kinase, IKK-1 and IKK-2. J. Biol. Chem. 274, 36146-36152. https://doi.org/10.1074/jbc.274.51.36146
  5. Chen, Y., Gao, F., Ye, X., Wei, S., Shi, M., Zheng, H., Chen, X.X., 2011. Deep sequencing of Cotesia vestalis bracovirus reveals the complexity of a polydnavirus genome. Virology 414, 42-50. https://doi.org/10.1016/j.virol.2011.03.009
  6. Choi, J.Y., Rho, J.Y., Kang, J.N., Shim, H.J., Woo, S.D., Jin, B.R., Li, M.S., Je, Y.H., 2005. Genomic segments cloning and analysis of Cotesia plutellae polydnavirus using plasmid capture system. Biochem. Biophys. Res. Commun. 332, 487-493. https://doi.org/10.1016/j.bbrc.2005.04.146
  7. Heptat, R., Kim, Y., 2012. In vivo transient expression for the functional analysis of polydnaviral genes. J. Invertebr. Pathol. 111, 152-159. https://doi.org/10.1016/j.jip.2012.07.025
  8. Karin, M., 1999. The beginning of the end: $I{\kappa}B$ kinase (IKK) and $NF-_{\kappa}B$ activation. J. Biol. Chem. 274, 27339-27342. https://doi.org/10.1074/jbc.274.39.27339
  9. Kim, Y., 2006. Polydnavirus and its novel application to insect pest control. Kor. J. Appl. Entomol. 45, 241-259.
  10. Kim, Y., Choi, J.Y., Je, Y.H., 2007. Cotesia plutellae bracovirus genome and its function in altering insect physiology. J. Asia Pac. Entomol. 10, 181-191. https://doi.org/10.1016/S1226-8615(08)60351-9
  11. Kroemer, J.A., Webb, B.A., 2005. $I{\kappa}B-related$ vankyrin genes in the Campoletis sonorensis ichnovirus: temporal and tissue-specific patterns of expression in parasitized Heliothis virescens lepidopteran hosts. J. Virol. 79, 7617-7628. https://doi.org/10.1128/JVI.79.12.7617-7628.2005
  12. Kwon, D.H., Choi, B.R., Park, H.M., Lee, S.H., Miyata, T., Clark, J.M., Lee, S.H., 2004. Knockdown resistance allele frequency in field populations of Plutella xylostella in Korea. Pestic. Biochem. Physiol. 80, 21-30. https://doi.org/10.1016/j.pestbp.2004.06.001
  13. Latimer, M., Ernst, M.K., Dunn, L.L., Drutskaya, M., Rice, N.R., 1998. The N-terminal domain of $I{\kappa}B{\alpha}$ masks the nuclear localization signal(s) of p50 and c-Rel homodimers. Mol. Cell. Biol. 18, 2640-2649. https://doi.org/10.1128/MCB.18.5.2640
  14. Lin, P.H., Huange, L.H., Steward, R., 2000. Cactin, a conserved protein that interacts with the Drosophila IĸB protein cactus and modulates its function. Mech. Dev. 94, 57-65. https://doi.org/10.1016/S0925-4773(00)00314-2
  15. Liu, Z.P., Galindo, R.L., Wasserman, S.A., 1997. A role for CKII phosphorylation of the cactus PEST domain in dorsoventral patterning of the Drosophila embryo. Genes Dev. 11, 3413-3422. https://doi.org/10.1101/gad.11.24.3413
  16. Liu, S., Wang, X., Guo, S., He, J., Shi, Z., 2000. Seasonal abundance of the parasitoid complex associated with the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) in Hangzhou, China. Bull. Entomol. Res. 90, 221-231.
  17. Park, Y., Kim, Y., 2000. Eicosanoids rescue Spodoptera exigua infected with Xenorhabdus nematophila, the symbiotic bacteria to the entomopathogenic nematode Steinernema carpocapsae. J. Insect Physiol. 46, 1469-1476. https://doi.org/10.1016/S0022-1910(00)00071-8
  18. Raymond, M., 1985. Presentation d'un programme basic d'analyse log-probit pour micro-ordinateur. Cah. ORSTOM. Ser. Ent. Med. et Parasitol. 23, 117-121.
  19. SAS Institute, 1989. SAS/STAT user's guide, Release 6.03, Ed. Cary, N.C.
  20. Schuler, T.H., Denholm, I., Clark, S.J., Stewart, C.N., Poppy, G.M., 2004. Effects of Bt plants on the development and survival of the parasitoid Cotesia plutellae (Hymenoptera: Braconidae) in susceptible and Bt-resistant larvae of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). J. Insect Physiol. 50, 435-443. https://doi.org/10.1016/j.jinsphys.2004.03.001
  21. Schuler, T.H., Martinez-Torres, D., Thompson, A.J., Denholm, I., Devonshire, A.L., Duce, I.R., Williamson, M.S., 1998. Toxicological, electrophysiological, and molecular characterisation of knock-down resistance to pyrethroid insecticides in the diamondback moth, Plutella xylostella (L.). Pestic. Biochem. Physiol. 59, 169-182. https://doi.org/10.1006/pest.1998.2320
  22. Senftleben, U., Cao, Y., Xiao, G., Greten, F.R., Krahn, G., Bonizzi, G., Chen, Y., Hu, Y., Fong, A., Sun, S.C., Karin, M., 2001. Activation by $IKK{\alpha}$ of a second evolutionarily conserved, $NF-_{\kappa}B$ signaling pathway. Science 293, 1495-1499. https://doi.org/10.1126/science.1062677
  23. Seo, S.Y., Kim, Y., 2011. Development of "Bt-Plus" biopesticide using entomopathogenic bacterial (Xenorhabdus nematophila, Photorhabdus temperata ssp. temperata) metabolites. Kor. J. Appl. Entomol. 50, 171-178. https://doi.org/10.5656/KSAE.2011.07.0.24
  24. Seo, S.Y., Lee, S., Hong, Y., Kim, Y., 2012. Phospholipase $A_2$ inhibitors synthesized by two entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata. Appl. Environ. Microbiol. 78, 3816-3823. https://doi.org/10.1128/AEM.00301-12
  25. Shi, Z., Guo, S., Lin, W., Liu, S., 2004. Evaluation of selective toxicity of five pesticides against Plutella xylostella (Lep: Plutellidae) and their side-effects against Cotesia plutellae (Hym: Braconidae) and Oomyzus sokolowskii (Hym: Eulophidae). Pest Mang. Sci. 60, 1213-1219. https://doi.org/10.1002/ps.946
  26. Shirane, M., Hatakeyama, S., Hattori, K., Nakayama, K., Nakayama, K.-I., 1999. Common pathway for the ubiquitination of $I{\kappa}B{\alpha}$, $I{\kappa}B$ ${\beta}$, and $I{\kappa}B{\varepsilon}$ mediated by the F-box protein FWD1. J. Biol. Chem. 274, 28169-28174. https://doi.org/10.1074/jbc.274.40.28169
  27. Tabashnik, B.E., Liu, Y.B., Malvar, T., Heckel, D.G., Masson, L., Ballester, V., Granero, F., Mensua, J.L., Ferre, J., 1997. Global variation in the genetic and biochemical basis of diamondback moth resistance to Bacillus thuringiensis. Proc. Natl. Acad. Sci. USA 94, 12780-12785.
  28. Thoetkiattikul, H., Beck, M.H., Strand, M.R., 2005. Inhibitor ${\kappa}B-like$ proteins from a polydnavirus inhibit $NF-{\kappa}B$ activation and suppress the insect immune response. Proc. Natl. Acad. Sci. USA 102: 11426-11431. https://doi.org/10.1073/pnas.0505240102
  29. Webb, B.A., 1998. Polydnavirus biology, genome structure, and evolution, in: Miller, L.K., Ball, L.A. (Eds.), The insect viruses. Plenum Publishing Corporation, New York, pp. 105-139.
  30. Williamson, M.S., Martinez-Torres, D., Hick, C.A., Devonshire, A.L., 1996. Identification of mutations in the housefly para-type sodium channel gene associated with knockdown resistance (kdr) to pyrethroid insecticides. Mol. Gen. Genet. 252, 51-60. https://doi.org/10.1007/BF02173204
  31. Yuan, G., Gao, W., Yang, Y., Wu, Y., 2010. Molecular cloning, genomic structure, and genetic mapping of two RDL-orthologous genes of GABA receptors in the diamondback moth, Plutella xylostella. Arch. Insect Biochem. Physiol. 74, 81-90.

Cited by

  1. A Technique to Enhance Insecticidal Efficacy Using Bt Cry Toxin Mixture and Eicosanoid Biosynthesis Inhibitor vol.19, pp.3, 2015, https://doi.org/10.7585/kjps.2015.19.3.301
  2. Insecticidal Effect of Organic Materials of BT, Neem and Matrine Alone and Its Mixture against Major Insect Pests of Organic Chinese cabbage vol.17, pp.3, 2013, https://doi.org/10.7585/kjps.2013.17.3.213
  3. A Technique to Enhance Bacillus thuringiensis Spectrum and Control Efficacy Using Cry Toxin Mixture and Immunosuppressant vol.18, pp.3, 2014, https://doi.org/10.7585/kjps.2014.18.3.181