The optical and electrical properties of IGZO thin film fabricated by RF magnetron sputtering according to RF power

RF magnetron sputtering법으로 형성된 IGZO박막의 RF power에 따른 광학적 및 전기적 특성

  • Zhang, Ya Jun (Department of Electronic Engineering, Cheongju University) ;
  • Kim, Hong Bae (Department of Semiconductor Engineering, Cheongju University)
  • 장야쥔 (청주대학교 대학원 전자공학과) ;
  • 김홍배 (청주대학교 이공대학 반도체공학과)
  • Received : 2013.02.28
  • Accepted : 2013.03.18
  • Published : 2013.03.31

Abstract

IGZO transparent conductive thin films were widely used as transparent electrode of optoelectronic devices. We have studied the optical and electrical properties of IGZO thin films. The IGZO thin films were deposited on the corning 1737 glass by RF magnetron sputtering method. The RF power in sputtering process was varied as 25, 50, 75and 100 W, respectively. All of the thin films transmittance in the visible range was above 85%. XRD analysis showed that amorphous structure of the thin films without any peak. The thin films were electrically characterized by high mobility above $13.4cm^2/V{\cdot}s$, $7.0{\times}10^{19}cm^{-3}$ high carrier concentration and $6{\times}10^{-3}{\Omega}-cm$ low resistivity. By the studies we found that IGZO transparent thin film can be used as transparent electrodes in electronic devices.

Keywords

References

  1. J. Han, P. Q. Mantas, and A. M. R. Senos, J.EUR. CERAM. SOC. 21, 1338, 2001.
  2. T. Minami, H. Nanto, and S. Takata, Jpn. J. Appl. Phys. 23, 280, 1984. https://doi.org/10.1143/JJAP.23.L280
  3. T. Minami, T. Kakumu and S. Takata, J. Vac. Sci. Technol. A 14, 1704, 1996.
  4. A. Kaijou, M. Ohyama, M. Shibata, K. Inoue, U. S.Patent No. 5, 972, 527, 1999.
  5. H. M. Kim, S. K. Jeung, J. S. Ahn, Y. J. Kang, C. K. Je, Jpn. J. Appl. Phys. 42, 1, 2003. https://doi.org/10.1143/JJAP.42.1
  6. T. Minami, T. Miyata and T. Yamamoto,J. Vac. Sci. Technol. A 17, 1822, 1999.
  7. H. Hara, T. Hanada, T. Shiro, T. Yatabe, J. Vac. Technol. A22, 4, 2004.
  8. P. Nunes, E. Fortunato, P. Tonello, F.Braz Fermandesa, P. Vilarinhob, and R. Martin, Vacuum, 64,281, 2002. https://doi.org/10.1016/S0042-207X(01)00322-0
  9. M. S. Wang, E. J. Kim, J. S. Chung, E. W. Shin, S. H. Hahn, K. E. Lee, C. H. Park, Phys. Stat. Sol. (a), 203, 2418, 2006. https://doi.org/10.1002/pssa.200521398
  10. K. H. Kim, K. C. Park, D. Y. Ma, J. Appl. Phys, 81, 7764, 1997. https://doi.org/10.1063/1.365556
  11. Y. Zhang, G. Du, B. Liu, J. Cryst. Growth, 262, 456, 2004. https://doi.org/10.1016/j.jcrysgro.2003.10.079
  12. D. H. Kong, W. C. Choi, Y. C. Shin, J. H. Park, T. G. Kim, J. Korean. Phys. Soc, 48, 1214, 2006.
  13. D. M. Bagnall, Y. F. Chen, M. Y. Shen, Z. Zhu, T. Goto, T. Yao, J. Cryst. Growth, 184/185, 605, 1998. https://doi.org/10.1016/S0022-0248(98)80127-9
  14. Y. Zhang, G. Du, D. Liu, X. Wang, et al., J. Crystal Growth 243, 439, 2002. https://doi.org/10.1016/S0022-0248(02)01569-5
  15. Y. Igasaki and H. Saito, J. Appl. Phys. 70, 3613, 1991. https://doi.org/10.1063/1.349258
  16. N. Kawasaki, Y. Kubozo, H. Okamoto, A. Fujiwara and M. Yamaji, Appl. Phys. Lett. Vol 94, 043310, 2009. https://doi.org/10.1063/1.3076124
  17. X. Chen, W. Guan, G. Fang, X. Z. Zhao, Appl. Surf. Sci, 252, 1561, 2005. https://doi.org/10.1016/j.apsusc.2005.02.137
  18. B. E. Semelius, K. F. Berggren, Z. C. Jin, I. Hamberg, C. G. Granqvist, Phys. Rev. B, 37, 10244, 1988. https://doi.org/10.1103/PhysRevB.37.10244
  19. Look, D.C., Hemsky, J.W. and Sizelove, J.R. (1999) Physical Review Letters, 82, 2552. https://doi.org/10.1103/PhysRevLett.82.2552
  20. Vanheusden, K., Seager, C.H., Warren, W.L., Tallant, D.R. and Voight, J,A. (1996) Applied Physics Letters, 68, 403 https://doi.org/10.1063/1.116699