DOI QR코드

DOI QR Code

Rapid Detection and Identification of Wuchereria bancrofti, Brugia malayi, B. pahangi, and Dirofilaria immitis in Mosquito Vectors and Blood Samples by High Resolution Melting Real-Time PCR

  • Thanchomnang, Tongjit (Research and Diagnostic Center for Emerging Infectious Diseases, Faculty of Medicine, Khon Kaen University) ;
  • Intapan, Pewpan M. (Research and Diagnostic Center for Emerging Infectious Diseases, Faculty of Medicine, Khon Kaen University) ;
  • Tantrawatpan, Chairat (Research and Diagnostic Center for Emerging Infectious Diseases, Faculty of Medicine, Khon Kaen University) ;
  • Lulitanond, Viraphong (Research and Diagnostic Center for Emerging Infectious Diseases, Faculty of Medicine, Khon Kaen University) ;
  • Chungpivat, Sudchit (Parasitology Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University) ;
  • Taweethavonsawat, Piyanan (Parasitology Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University) ;
  • Kaewkong, Worasak (Research and Diagnostic Center for Emerging Infectious Diseases, Faculty of Medicine, Khon Kaen University) ;
  • Sanpool, Oranuch (Research and Diagnostic Center for Emerging Infectious Diseases, Faculty of Medicine, Khon Kaen University) ;
  • Janwan, Penchom (Research and Diagnostic Center for Emerging Infectious Diseases, Faculty of Medicine, Khon Kaen University) ;
  • Choochote, Wej (Department of Parasitology, Faculty of Medicine, Chiang Mai University) ;
  • Maleewong, Wanchai (Research and Diagnostic Center for Emerging Infectious Diseases, Faculty of Medicine, Khon Kaen University)
  • Received : 2013.05.30
  • Accepted : 2013.10.11
  • Published : 2013.12.31

Abstract

A simple, rapid, and high-throughput method for detection and identification of Wuchereria bancrofti, Brugia malayi, Brugia pahangi, and Dirofilaria immitis in mosquito vectors and blood samples was developed using a real-time PCR combined with high-resolution melting (HRM) analysis. Amplicons of the 4 filarial species were generated from 5S rRNA and spliced leader sequences by the real-time PCR and their melting temperatures were determined by the HRM method. Melting of amplicons from W. bancrofti, B. malayi, D. immitis, and B. pahangi peaked at $81.5{\pm}0.2^{\circ}C$, $79.0{\pm}0.3^{\circ}C$, $76.8{\pm}0.1^{\circ}C$, and $79.9{\pm}0.1^{\circ}C$, respectively. This assay is relatively cheap since it does not require synthesis of hybridization probes. Its sensitivity and specificity were 100%. It is a rapid and technically simple approach, and an important tool for population surveys as well as molecular xenomonitoring of parasites in vectors.

Keywords

References

  1. Weil GJ, Ramzy RM. Diagnostic tools for filariasis elimination programs. Trends Parasitol 2007; 23: 78-82. https://doi.org/10.1016/j.pt.2006.12.001
  2. World Health Organization. Lymphatic filariasis: the disease and its control. Fifth report of the WHO Expert Committee on Filariasis. Tech Rep Ser 1992; 821: 1-71.
  3. Triteeraprapab S, Nuchprayoon I, Porksakorn C, Poovorawan Y, Scott AL. High prevalence of Wuchereria bancrofti infection among Myanmar migrants in Thailand. Ann Trop Med Parasitol 2001; 95: 535-538. https://doi.org/10.1080/00034980120072248
  4. Center for Disease Control and Prevention. Recommendation of International Task Force for Disease Eradication. Morbidity and Mortality Weekly Report. Recommendation and Reports 1993; 42: 1-38.
  5. Orihel TC. Morphology of the larval stages of Dirofilaria immitis in the dog. J Parasitol 1961; 47: 251-262. https://doi.org/10.2307/3275301
  6. Denham DA, McGreenvy PB. Brugian filariasis: epidemiological and experimental studies. Adv Parasitol 1977; 15: 243-309. https://doi.org/10.1016/S0065-308X(08)60530-8
  7. Lim KC, Mak JW. Human behaviour and zoonotic disease in Malaysia. In Cross JH, Croll N eds, Human Ecology and Infectious Disease. London, UK. Academic Press. 1983, p 49-72.
  8. Palmieri JR, Ratiwayanto S, Masbar S, Tirtokusumo S, Rusch J, Marwoto HA. Evidence of possible natural infections of man with Brugia pahangi in South Kalimantan (Borneo), Indonesia. Trop Geogr Med 1985; 37: 239-244.
  9. Simon F, Siles-Lucas M, Morchon R, Gonzalez-Miguel J, Mellado I, Carreton E, Montoya-Alonso JA. Human and animal dirofilariasis: the emergence of a zoonotic mosaic. Clin Microbiol Rev 2012; 25: 507-544. https://doi.org/10.1128/CMR.00012-12
  10. Latrofa MS, Weigl S, Dantas-Torres F, Annoscia G, Traversa D, Brianti E, Otranto D. A multiplex PCR for the simultaneous detection of species of filarioids infesting dogs. Acta Trop 2012; 122: 150-154. https://doi.org/10.1016/j.actatropica.2012.01.006
  11. Nuchprayoon S, Sangprakarn S, Junpee A, Nithiuthai S, Chungpivat S, Poovorawan Y. Differentiation of Brugia malayi and Brugia pahangi by PCR-RFLP of ITS-1 and ITS-2. Southeast Asian J Trop Med Public Health 2003; 34: 67-73.
  12. Lulitanond V, Intapan PM, Pipitgool V, Choochote W, Maleewong W. Rapid detection of Wuchereria bancrofti in mosquitoes by LightCycler polymerase chain reaction and melting curve analysis. Parasitol Res 2004; 94: 337-341. https://doi.org/10.1007/s00436-004-1221-6
  13. Thanchomnang T, Intapan PM, Lulitanond V, Choochote W, Manjai A, Prasongdee TK, Maleewong W. Rapid detection of Brugia malayi in mosquito vectors using a real-time fluorescence resonance energy transfer PCR and melting curve analysis. Am J Trop Med Hyg 2008; 78: 509-513.
  14. Thanchomnang T, Intapan PM, Chungpivat S, Lulitanond V, Maleewong W. Differential detection of Brugia malayi and Brugia pahangi by real-time fluorescence resonance energy transfer PCR and its evaluation for diagnosis of B. pahangi-infected dogs. Parasitol Res 2010; 106: 621-625. https://doi.org/10.1007/s00436-009-1706-4
  15. Thanchomnang T, Intapan PM, Lulitanond V, Sangmaneedet S, Chungpivat S, Taweethavonsawat P, Choochote W, Maleewong W. Rapid detection of Dirofilaria immitis in mosquito vectors and dogs using a real-time fluorescence resonance energy transfer PCR and melting curve analysis. Vet Parasitol 2010; 168: 255-260. https://doi.org/10.1016/j.vetpar.2009.12.002
  16. Duscher G, Feiler A, Wille-Piazzai W, Bakonyi T, Leschnik M, Miterpáková M. Detection of Dirofilaria in Austrian dogs. Berl Munch Tierarztl Wochenschr 2009; 122: 199-203 (in German).
  17. Wongkamchai S, Monkong N, Mahannol P, Taweethavonsawat P, Loymak S, Foongladda S. Rapid detection and identification of Brugia malayi, B. pahangi, and Dirofilaria immitis by high-resolution melting assay. Vector Borne Zoonotic Dis 2013; 13: 31-36. https://doi.org/10.1089/vbz.2012.0971
  18. Wittwer CT, Reed GH, Gundry CN, Vandersteen JG, Pryor RJ. High-resolution genotyping by amplicon melting analysis using LCGreen. Clin Chem 2003; 49: 853-860. https://doi.org/10.1373/49.6.853
  19. Choochote W, Keha P, Sukhavat K, Khamboonruang C, Sukontason K. Aedes (Finlaya) togoi Theobald 1907, Chanthaburi strain, a laboratory vector in studies of filariasis in Thailand. Southeast Asian J Trop Med Public Health 1987; 18: 259-260.
  20. Maleewong W, Choochote W, Sukhavat K, Khamboonruang C, Arunyanart C. Scanning electron microscopic study of thirdstage larva of Wuchereria bancrofti and Brugia malayi in Thailand. Southeast Asian J Trop Med Public Health 1987; 18: 261-264.
  21. Choochote W, Leemingsawat S, Sucharit S, Kunnaphuti J, Wongkamchai S, Sukontason KL, Jitpakdi A. Aedes albolateralis, a potential vector of nocturnally subperiodic Wuchereria bancrofti and dengue type 2 virus. Southeast Asian J Trop Med Public Health 2001; 32: 621-624.
  22. World Health Organization. Basic laboratory methods in medical parasitology. Geneva, Switzerland. World Health Organization. 1991, p 39-61.
  23. Yen PK, Mak JW. Histochemical differentiation of Brugia, Wuchereria, Dirofilaria and Breinlia microfilariae. Ann Trop Med Parasitol 1978; 72:157-162.
  24. Chungpivat S, Taweethavonsawat P. The differentiation of microfilariae in dogs and cats using Giemsa's staining and the detection of acid phosphatase activity. J Thai Vet Pract 2008; 20: 47-55.
  25. Areekit S, Kanjanavas P, Pakpitchareon A, Khawsak P, Khuchareontaworn S, Sriyaphai T, Chansiri K. High resolution melting real- time PCR for rapid discrimination between Brugia malayi and Brugia pahangi. J Med Assoc Thai 2009; 92(suppl 3): S24-S28.
  26. World Health Organization. Global programme to eliminate lymphatic filariasis. Wkly Epidemiol Rec 2007; 82: 361-380.
  27. Ririe KM, Rasmussen RP, Wittwer CT. Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Anal Biochem 1997; 245: 154-160. https://doi.org/10.1006/abio.1996.9916
  28. Jariya P, Sucharit S. Dirofilaria repens from the eyelid of a woman in Thailand. Am J Trop Med Hyg 1983; 32: 1456-1457.

Cited by

  1. Trypanosome infection rates in tsetse flies in the “silent” sleeping sickness focus of Bafia in the Centre Region in Cameroon vol.8, pp.1, 2013, https://doi.org/10.1186/s13071-015-1156-z
  2. Is molecular xenomonitoring of mosquitoes for Dirofilaria repens suitable for dirofilariosis surveillance in endemic regions? vol.115, pp.2, 2013, https://doi.org/10.1007/s00436-015-4767-6
  3. Detection and quantification of Wuchereria bancrofti and Brugia malayi DNA in blood samples and mosquitoes using duplex droplet digital polymerase chain reaction vol.115, pp.8, 2013, https://doi.org/10.1007/s00436-016-5051-0
  4. Pyrosequencing Using SL and 5S rRNA as Molecular Markers for Identifying Zoonotic Filarial Nematodes in Blood Samples and Mosquitoes vol.16, pp.5, 2016, https://doi.org/10.1089/vbz.2015.1914
  5. Prevalence and risk factors associated with Dirofilaria immitis infection in dogs and cats in Songkhla and Satun provinces, Thailand vol.51, pp.4, 2013, https://doi.org/10.1016/j.anres.2017.05.003
  6. The use of molecular xenomonitoring for surveillance of mosquito-borne diseases vol.376, pp.1818, 2013, https://doi.org/10.1098/rstb.2019.0816
  7. The Incidence of Dirofilaria immitis in Shelter Dogs and Mosquitoes in Austria vol.10, pp.5, 2013, https://doi.org/10.3390/pathogens10050550
  8. Collection and DNA Detection of Dirofilaria immitis (Rhabditida Onchocercidae), Using a Novel Primer Set, in Wild-Caught Mosquitoes From Gainesville, FL vol.58, pp.3, 2021, https://doi.org/10.1093/jme/tjaa272
  9. Membrane Technology for Rapid Point-of-Care Diagnostics for Parasitic Neglected Tropical Diseases vol.34, pp.4, 2021, https://doi.org/10.1128/cmr.00329-20