DOI QR코드

DOI QR Code

Modulation of Antibody Responses against Gnathostoma spinigerum in Mice Immunized with Crude Antigen Formulated in CpG Oligonucleotide and Montanide ISA720

  • Intapan, Pewpan M. (Department of Parasitology and, Faculty of Medicine, Khon Kaen University) ;
  • Hirunpetcharat, Chakrit (Department of Microbiology, Faculty of Public Health, Mahidol University) ;
  • Kularbkaew, Churairat (Department of Pathology, Faculty of Medicine, Khon Kaen University) ;
  • Yutanawiboonchai, Wiboonchai (Department of Pathology, Faculty of Medicine, Khon Kaen University) ;
  • Janwan, Penchom (Department of Parasitology and, Faculty of Medicine, Khon Kaen University) ;
  • Maleewong, Wanchai (Department of Parasitology and, Faculty of Medicine, Khon Kaen University)
  • Received : 2013.05.30
  • Accepted : 2013.10.11
  • Published : 2013.12.31

Abstract

This study aimed to investigate the antibody responses in mice immunized with Gnathostoma spinigerum crude antigen (GsAg) incorporated with the combined adjuvant, a synthetic oligonucleotide containing unmethylated CpG motif (CpG ODN 1826) and a stable water in oil emulsion (Montanide ISA720). Mice immunized with GsAg and combined adjuvant produced all antibody classes and subclasses to GsAg except IgA. IgG2a/2b/3 but not IgG1 subclasses were enhanced by immunization with CpG ODN 1826 when compared with the control groups immunized with non-CpG ODN and Montanide ISA or only with Montanide ISA, suggesting a biased induction of a Th1-type response by CpG ODN. After challenge infection with live G. spinigerum larvae, the levels of IgG2a/2b/3 antibody subclasses decreased immediately and continuously, while the IgG1 subclass remained at high levels. This also corresponded to a continuous decrease of the IgG2a/IgG1 ratio after infection. Only IgM and IgG1 antibodies, but not IgG2a/2b/3, were significantly produced in adjuvant control groups after infection. These findings suggest that G. spinigerum infection potently induces a Th2-type biased response.

Keywords

References

  1. Miyazaki I. On the genus Gnathostoma and human gnathostomiasis, with special reference to Japan. Exp Parasitol 1960; 9: 338-370. https://doi.org/10.1016/0014-4894(60)90040-0
  2. Nawa Y. Historical review and current status of gnathostomiasis in Asia. Southeast Asian J Trop Med Public Health 1991; 22: 217-219.
  3. Moore DA, McCroddan J, Dekumyoy P, Chiodini PL. Gnathostomiasis: an emerging imported disease. Emerg Infect Dis 2003; 9: 647-650. https://doi.org/10.3201/eid0906.020625
  4. Herman JS, Chiodini PL. Gnathostomiasis, another emerging imported disease. Clin Microbiol Rev 2009; 22: 484-492. https://doi.org/10.1128/CMR.00003-09
  5. Daengsvang S. Gnathostomiasis in Southeast Asia. Southeast Asian J Trop Med Public Health 1981; 12: 319-332.
  6. Boongird P, Phuapradit P, Siridej N, Chirachariyavej T, Chuahirun S, Vejjajiva A. Neurological manifestations of gnathostomiasis. J Neurol Sci 1977; 31: 279-291. https://doi.org/10.1016/0022-510X(77)90113-7
  7. Jaroonvesama N. Differential diagnosis of eosinophilic meningitis. Parasitol Today 1988; 4: 262-266. https://doi.org/10.1016/0169-4758(88)90146-9
  8. Schmutzhard E, Boongird P, Vejjajiva A. Eosinophilic meningitis and radiculomyelitis in Thailand, caused by CNS invasion of Gnathostoma spinigerum and Angiostrongylus cantonensis. J Neurol Neurosurg Psychiatry 1988; 51: 80-87. https://doi.org/10.1136/jnnp.51.1.80
  9. Graeff-Teixeira C, da Silva AC, Yoshimura K. Update on eosinophilic meningoencephalitis and its clinical relevance. Clin Microbiol Rev 2009; 22: 322-348. https://doi.org/10.1128/CMR.00044-08
  10. Kraivichian K, Nuchprayoon S, Sitichalernchai P, Chaicumpa W, Yentakam S. Treatment of cutaneous gnathostomiasis with ivermectin. Am J Trop Med Hyg 2004; 71: 623-628.
  11. Strady C, Dekumyoy P, Clement-Rigolet M, Danis M, Bricaire F, Caumes E. Long-term follow-up of imported gnathostomiasis shows frequent treatment failure. Am J Trop Med Hyg 2009; 80: 33-35.
  12. Anantaphruti M, Waikagul J, Nithi-Uthai S, Pubampen S, Rojekittikhun W. Detection of humoral immune response to Gnathostoma spinigerum in mice. Southeast Asian J Trop Med Public Health 1986; 17: 172-176.
  13. Anantaphruti MT, Nuamtanong S, Dekumyoy P. Diagnostic values of IgG4 in human gnathostomiasis. Trop Med Int Health 2005; 10: 1013-1021. https://doi.org/10.1111/j.1365-3156.2005.01478.x
  14. Maleewong W, Morakote N, Thamasonthi W, Charuchinda K, Tesana S, Khamboonruang C. Serodiagnosis of human gnathostomiasis. Southeast Asian J Trop Med Public Health 1988; 19: 201-205.
  15. Tapchaisri P, Nopparatana C, Chaicumpa W, Setasuban P. Specific antigen of Gnathostoma spinigerum for immunodiagnosis of human gnathostomiasis. Int J Parasitol 1991; 21: 315-319. https://doi.org/10.1016/0020-7519(91)90033-4
  16. Nuchprayoon S, Sanprasert V, Suntravat M, Kraivichian K, Saksirisampant W, Nuchprayoon I. Study of specific IgG subclass antibodies for diagnosis of Gnathostoma spinigerum. Parasitol Res 2003; 91: 137-143. https://doi.org/10.1007/s00436-003-0947-x
  17. Laummaunwai P, Sawanyawisuth K, Intapan PM, Chotmongkol V, Wongkham C, Maleewong W. Evaluation of human IgG class and subclass antibodies to a 24 kDa antigenic component of Gnathostoma spinigerum for the serodiagnosis of gnathostomiasis. Parasitol Res 2007; 101: 703-708. https://doi.org/10.1007/s00436-007-0538-3
  18. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K, Akira S. A Toll-like receptor recognizes bacterial DNA. Nature 2000; 408: 740-745. https://doi.org/10.1038/35047123
  19. Krieg AM. CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol 2002; 20: 709-760. https://doi.org/10.1146/annurev.immunol.20.100301.064842
  20. Sparwasser T, Koch ES, Vabulas RM, Heeg K, Lipford GB, Ellwart JW, Wagner H. Bacterial DNA and immunostimulatory CpG oligonucleotides trigger maturation and activation of murine dendritic cells. Eur J Immunol 1998; 28: 2045-2054. https://doi.org/10.1002/(SICI)1521-4141(199806)28:06<2045::AID-IMMU2045>3.0.CO;2-8
  21. Behboudi S, Chao D, Klenerman P, Austyn J. The effects of DNA containing CpG motif on dendritic cells. Immunology 2000; 99: 361-366. https://doi.org/10.1046/j.1365-2567.2000.00979.x
  22. Krieg AM, Yi AK, Matson S, Waldschmidt TJ, Bishop GA, Teasdale R, Koretzky GA, Klinman DM. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 1995; 374: 546-549. https://doi.org/10.1038/374546a0
  23. Chu RS, Targoni OS, Krieg AM, Lehmann PV, Harding CV. CpG oligodeoxynucleotides act as adjuvants that switch on T helper 1 (Th1) immunity. J Exp Med 1997; 186: 1623-1631. https://doi.org/10.1084/jem.186.10.1623
  24. Roman M, Martin-Orozco E, Goodman JS, Nguyen MD, Sato Y, Ronaghy A, Kornbluth RS, Richman DD, Carson DA, Raz E. Immunostimulatory DNA sequences function as T helper-1-promoting adjuvants. Nat Med 1997; 3: 849-854. https://doi.org/10.1038/nm0897-849
  25. Zimmermann S, Egeter O, Hausmann S, Lipford GB, Röcken M, Wagner H, Heeg K, CpG oligodeoxynucleotides trigger protective and curative Th1 responses in lethal murine leishmaniasis. J Immunol 1998; 160: 3627-3630.
  26. Zimmermann S, Dalpke A, Heeg K. CpG oligonucleotides as adjuvant in therapeutic vaccines against parasitic infections. Int J Med Microbiol 2008; 298: 39-44. https://doi.org/10.1016/j.ijmm.2007.07.011
  27. Kringel H, Dubey JP, Beshah E, Hecker R, Urban JFJr. CpG-oligodeoxynucleotides enhance porcine immunity to Toxoplasma gondii. Vet Parasitol 2004; 123: 55-66. https://doi.org/10.1016/j.vetpar.2004.01.021
  28. Guo YJ, Wu D, Wang KY, Sun SH. Adjuvant effects of bacillus Calmette-Guerin DNA or CpG-oligonucleotide in the immune response to Taenia solium cysticercosis vaccine in porcine. Scand J Immunol 2007; 66: 619-627. https://doi.org/10.1111/j.1365-3083.2007.02013.x
  29. Hirunpetcharat C, Wipasa J, Sakkhachornphop S, Nitkumhan T, Zheng YZ, Pichyangkul S, Krieg AM, Walsh DS, Heppner DG, Good MF. CpG oligodeoxynucleotide enhances immunity against blood-stage malaria infection in mice parenterally immunized with a yeast-expressed 19 kDa carboxyl-terminal fragment of Plasmodium yoelii merozoite surface protein-1 (MSP119) formulated in oil-based Montanides. Vaccine 2003; 21: 2923-2932. https://doi.org/10.1016/S0264-410X(03)00132-4
  30. Maleewong W, Loahabhan P, Wongkham C, Intapan P, Morakote N, Khamboonruang C. Effects of albendazole on Gnathostoma spinigerum in mice. J Parasitol 1992; 78: 125-126. https://doi.org/10.2307/3283698
  31. Lawrence GW, Saul A, Giddy AJ, Kemp R, Pye D. Phase I trial in humans of an oil-based adjuvant SEPPIC MONTANIDE ISA 720. Vaccine 1997; 15: 176-178. https://doi.org/10.1016/S0264-410X(96)00150-8
  32. Voehringer D. The role of basophils in helminth infection. Trends Parasitol 2009; 25: 551-556. https://doi.org/10.1016/j.pt.2009.09.004
  33. Hewitson JP, Grainger JR, Maizels RM. Helminth immunoregulation: the role of parasite secreted proteins in modulating host immunity. Mol Biochem Parasitol 2009; 167: 1-11. https://doi.org/10.1016/j.molbiopara.2009.04.008

Cited by

  1. Evaluation of immunodiagnostic tests for human gnathostomiasis using different antigen preparations of Gnathostoma spinigerum larvae against IgE, IgM, IgG, IgG1‐4 and IgG1 patterns of post vol.26, pp.12, 2013, https://doi.org/10.1111/tmi.13679