
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 12, Dec. 2013 3096

Copyright ⓒ 2013 KSII

A preli`minary version of this paper appeared in IEEE/ACM CCGrid 2012, May 13-16, Ottawa, Canada [36]. Then,

in [37], the preliminary version is developed to study the impact of the trade-off factor on the degree of the

significance of allocation cost to makespan.

http://dx.doi.org/10.3837/tiis.2013.12.008

SCTTS: Scalable Cost-Time Trade-off Scheduling for
Workflow Application in Grids

Vahid Khajehvand

1
, Hossein Pedram

2
 and Mostafa Zandieh

3

1 Department of Computer Engineering and Information Technology

Qazvin Branch, Islamic Azad University, Qazvin, Iran

[e-mail: khajehvand@qiau.ac.ir]
2 Department of Computer Engineering and Information Technology

 Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran

[e-mail: pedram@aut.ac.ir]
3 Department of Industrial Management

 Shahid Beheshti University, G.C., Tehran, Iran

[e-mail: m_zandieh@sbu.ac.ir]

*Corresponding author: Vahid Khajehvand

Received July 19, 2013; revised October 20, 2013; accepted November 16, 2013; published December 27, 2013

Abstract

To execute the performance driven Grid applications, an effective and scalable workflow

scheduling is seen as an essential. To optimize cost & makespan, in this paper, we propose a

Scalable Cost-Time Trade-off (SCTT) model for scheduling workflow tasks. We have

developed a heuristic algorithm known as Scalable Cost-Time Trade-off Scheduling (SCTTS)

with a lower runtime complexity based on the proposed SCTT model. We have compared the

performance of our proposed approach with other heuristic and meta-heuristic based

scheduling strategies using simulations. The results show that the proposed approach

improves performance and scalability with different workflow sizes, task parallelism and

heterogeneous resources. This method, therefore, outperforms other methods.

Keywords: Cost-makespan minimization, cost-time trade-off, workflow scheduling,

scalability, utility grids

3097 Khajehvand et al.: SCTTS: Scalable Cost-Time Trade-off Scheduling for WorkflowApplication in Grids

1. Introduction

To build utility computing systems, they need to consists of a component model, a

methodology, a set of tools and common services. A utility computing system is a system that

automatically creates and manages multiple utility services on a shared infrastructure. The

infrastructure consists of pools of the hardware resources, such as servers, storage and network

tools, as well as software resources [1]. A utility Grid gives an economy model in which users

pay service providers for their services due to factors such as the Quality of Service (QoS)

provided.

To conduct large-scale computations, the grid environment software and hardware

resources are supported by the shared distributed infrastructures. To execute applications in

sciences such as earthquake [2], astronomy [3], high energy physics [4] and etc., these

infrastructures have proven to be highly efficient. Workflows constitute a common model for

describing a wide range of applications in distributed environments. The workflow is

represented in a “Direct Acyclic Graph” (DAG) with nodes and edges representing the tasks

and data dependencies among the tasks, respectively.

Once an application is transformed into the workflow structure, workflow management

system will be ready to control and manage the execution of workflow on a distributed

infrastructure. A taxonomy of Grid workflow management systems is found in [5]. Workflow

scheduling problem is mapping each task on a suitable resource and ordering the tasks on each

resource to satisfy performance criterion. Existing Grid scheduling methods try to minimize

the execution time (makespan) or the execution cost of the workflows. Moreover, in utility

Grids, there is much potential to study the combinations of QoS attributes.

The current methods mostly are not designed for minimizing the cost and time. Considering

these QoS attributes, the scheduler faces a time-cost tradeoff in selecting appropriate services,

which belongs to the multi-objective optimization problem family. However, none of these

papers considered the issue of scalability.

There are three classes of approaches to the problem of multi-objective scheduling [6]. The

first class of the approaches extends the definition of optimality to pareto optimality [7-10].

The second one is bi-criteria scheduling approaches, usually limited to optimizing two specific

objectives [10-18]. The last one optimizes a linear combination of multiple scheduling

objectives with a different weight value assigned to each one of them [9, 19, 20]. This last

class assumes that the user is able to specify the requirements in such a model. This method is

an easy way to express users’ requirements; this method also helps researchers with

simplifying the problem at the same time it proposes an effective performance solution. Many

researchers use this method to develop algorithms for multi-objective scheduling problem.

Due to the complexities of this problem, however most of these methods use time consuming

meta-heuristic approaches [8, 9, 21] e.g., Genetic Algorithms.

To address this problem, there are few fast and efficient heuristic methods. The method in

[20] is one of them. This method [20] relies on scheduling parallel application, whereas our

method is based on scheduling workflow tasks. It is worth noting that in [20] the issue is

proposed for future works. Workflows are loosely-coupled parallel applications that consist of

a set of computational tasks linked via data dependencies, unlike tightly-coupled applications,

such as parallel application, in which tasks communicate directly via the network. Workflow

tasks typically communicate using the files. Each task in a workflow produces one or more

output files that become input files to other tasks. If tasks are run on different computational

nodes, these files will be either stored in a shared file system, or transferred from one node to

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 12, Dec. 2013 3098

Copyright ⓒ 2013 KSII

the next one by the workflow management system [22, 23]. Therefore, the method presented

in [20], is not able to schedule workflow tasks.

Due to the different resource consumers and providers, the scheduling problem becomes

highly complicated and NP-complete [24] in such an environment so that each party seeks its

own profits. So the resource consumers and providers act independently at the same time

pursuing conflicting aims. The resource consumers seek the minimum time and cost for

scheduling application, whereas the main focus of resource providers is on the resource

utilization gains. Thus, the main users’ challenge in this environment will be scheduling an

application on the heterogeneous resources. In this case, the users have no explicit control on

minimizing both the time and cost. It is also scalable due to an increase in the workflow size,

task parallelism and the number of resources.

This study-base is inspired by efforts to combine application management system and

resources management system. To execute the workflow tasks, the resource slots required by

the workflow tasks, can be virtually obtained by a resource provisioning system. In general,

the cost of task execution can be computed according to the task allocation cost and task

execution time. Cost and makespan optimization is of great importance due to the resources

heterogeneity and scalability relative to an increase in the required number of processors,

workflow size and the number of the resources.

This paper introduces a Scalable Cost-Time Trade-off (SCTT) model to schedule workflow

application tasks for cost-makespan optimization. The model allows users to identify the

degree of the significance of each optimization objective using adjusting the trade-off factor.

Trade-off involves losing a quality or an aspect of criteria in return for gaining another quality

or aspect. It often implies that a decision has to be made with full comprehension of both the

upside and downside of a particular choice; the term is also used in an evolutionary context, in

which case the selection process acts as the "decision-maker". A decision in which you need to

choose between two opposite objectives or cannot be satisfied at the same time.

 Scalability is an important designing goal in a grid computing. A system can be scalable

with respect to its size, i.e. we can increase the workflow size and resources. To schedule

workflow tasks, based on the proposed SCTT model, we have developed a heuristic algorithm

known as Scalable Cost-Time Trade-off Scheduling (SCTTS). To optimize cost and time

(makespan) on heterogeneous resources, our proposed heuristic algorithm schedules parallel

workflow tasks according to the trade-off factor based on scalability. The main contributions

of the paper include:

1) Development of a SCTT cost model for scheduling workflow application on

heterogeneous resources with the capabilities of cost-makespan optimization.

2) Development of a SCTTS heuristic algorithm according to SCTT-based model with

following characteristics: (a) study the scalability of an increase in workflow size and

its impact on the allocation cost, makespan and runtime i.e. performance metrics, for

workflow scheduling. (b) study the scalability of an increase in workflow tasks

parallelism and its impact on performance metrics. (c) study the scalability of an

increase in the number of available resources and its impact on performance metrics.

The rest of this paper is organized as follows: Section 2 discusses related works. In section 3

the details of the proposed model and heuristic algorithm are described. Section 4 deals with a

simulation setup. In section 5, the relevant experiments for evaluating the efficiency of the

proposed algorithm are described with results analysis. Finally, section 6 ends with a

conclusion and future works.

3099 Khajehvand et al.: SCTTS: Scalable Cost-Time Trade-off Scheduling for WorkflowApplication in Grids

2. Related Work

Workflow scheduling problem has been extensively studied and a number of scheduling

algorithms have been proposed. There is a comprehensive introduction on the job scheduling

strategies [25, 26]. In [27], the computational models are surveyed for grid scheduling

problems and their resolution.

Workflow scheduling algorithms are classified into two main groups: best effort and QoS

constraint based scheduling [28]. The first group are further classified into four groups: list

scheduling heuristics [5, 12, 29, 30], clustering heuristics [31, 32], task duplication heuristics

[31, 32] and guided random search [31-35]. But in QoS-based, there are few works addressing

workflow scheduling with QoS. They mainly consider the makespan or execution cost of the

workflow as the major QoS attribute. As a result, they are suitable for community Grids,

moreover, in utility Grids, there is much potential to study the combinations of QoS attributes.

The current methods mostly are not designed with the aim of minimizing the cost and time.

Also, the scalability relative to an increase in the workflow size, task parallelism and

heterogeneous resources is scarcely considered.

Therefore, there are few fast and efficient heuristic methods addressing this problem. One

of them is the method in [20]. This method [20] relies on scheduling parallel applications,

whereas our method is centered on scheduling workflow tasks and also includes scalability.

Due to the data dependencies among tasks, scheduling workflow tasks becomes more complex

than scheduling parallel application.

There are a handful studies conducted on the cost optimization of workflow scheduling

close to the current paper’s study. In [21] a genetic algorithm is proposed to find an optimized

mapping of tasks on resources, minimizing both financial cost and makespan. This approach is

developed in [8, 9] presenting cost-based model in which resource providers advertise

available resource slots to users. A multi-objective genetic algorithm is presented capable of

provisioning a subset of resource slots to minimize application makespan under minimum

resource allocation cost. The main difference between these cost minimization algorithms and

our proposed algorithm lies in the fact that their works do not pay attention to the

heterogeneity of the resources. Thus, their entire resources possess identical CPU rating as

well as cost processing whereas, our proposed method pays attention to heterogeneous clusters

with different processing cost and CPU rating in real-world Utility Grid environments. Hence,

our focus on resource heterogeneity makes the selection of appropriate resource become very

complex.

To allocate a task to a resource, in [36], we presented a preliminary version of the proposed

algorithm so that it selects a task with a minimum first fit cost-makespan objective function.

Again, in [37], this algorithm is expanded to study the impact of the trade-off factor on the

degree of the significance of allocation cost to makespan. However, none of these two papers

considered the issue of scalability. While, in the proposed approach, a cost based workflow

scheduling model and a heuristic scheduling algorithm are added according to the proposed

model. To optimize cost to makespan with respect to scalability, the proposed approach

schedules parallel workflow tasks even with a lower runtime complexity.

3. Proposed Model and Heuristic Algorithm

In general, users need two QoS: service prices (cost) and execution time (makespan) of their

application scheduling on pay-per-use services [7, 38]. Users, normally tend to run their

applications in as the lowest makespan and cost as possible. The trade-off factor (α) represents

the user’s preference between the allocation cost and the makespan. The trade-off factor is a

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 12, Dec. 2013 3100

Copyright ⓒ 2013 KSII

number between 0 to 1. If “trade-off factor=0”, the allocation cost will be insignificant, while

the makespan will become significant. So the existing problem becomes time (makespan)

optimization problem. If “trade-off factor=0.5”, both allocation cost and makespan will be of

equal importance, in other words, the main issue will become the cost-time optimization. The

scheduler needs to distribute the tasks on the resources to satisfy both criteria. If “trade-off

factor=1” the makespan will be insignificant. As a result the problem becomes a cost

optimization one, so due to the allocation cost, the scheduling algorithms need to seek

economic resources.

In this section, based on a model known as the SCTT model, the workflow scheduling

problem will be discussed. Moreover, to optimize workflow cost-time, workflow scheduling

problem will be solved. According to SCTT model, a scalable heuristic algorithm will be

developed to solve workflow scheduling problem.

3.1 The Proposed SCTT Model

The proposed model consists of a set of heterogeneous users and resources. The users request

the execution of an application. R is a set of resources in an environment. The resources are

considered by a set of time slots where each time slot contains a start time, a finish time and a

number of the available processors.

A workflow application is represented in a DAG. A DAG is defined as G = (V,T), where V

is a set of nodes so that each node represents a task and T is a set of links, each link

representing the computation precedence order between two tasks. For example, a link

(,)i j T represents the precedence constraint of the task vi that needs to be completed before

task vj starts. The data is a V*V matrix of communication data, where dij is the amount of data

required to be transmitted from task vi to task vj. In a workflow, a task which does not have any

parent task is known as an entry task, denoted as v0 and a task which does not have any child

task is known as an exit task, denoted as vn+1. For simplicity, the application is assumed to

have a single entry task and a single exit task. If there is more than one entry task or exit task in

the workflow, they will be connected to a zero-time pseudo entry/exit task.

If task t is executed on one of the available slots of the resource r, its Estimated Execution

Time (EET) will be represented by EET(i,r). The Estimated Allocation Cost (EAC) of task i on

the slots of resource r is obtained by the following equation:
(,) (,) , ,r iEAC i r EET i r C RNP i T r R (1)

where Cr is an allocation cost of each slot time of the resource r for a single processor in time

unit. Furthermore RNPi is the required number of processors of the task i.

As the application is defined in DAG form, there needs to be a data dependency between

application tasks. If two dependent tasks are to be executed on the slots of the same resource

File Transfer Cost (FTC) will be negligible. Otherwise its FTC needs to be taken into account.

Also, assuming that there is a parallel data transfer between different resources, maximum

value of the FTC needs to be considered as a file transfer cost. So the total FTC(TFTC) for

allocating task j on resource r is computed by:

()
(,) max { (,)}, , ,

i parentTasks j
TFTC j r FTC i j j T r R

 (2)

where parentTasks is a set of the predecessor tasks of a task. To solve workflow scheduling

problem, we find a resource that minimizes TFTC. As we see in Eq.(2) if two tasks i, j with a

data dependency are allocated on the slots of the same resources, its FTC will becomes

negligible.

To compute Earliest Start Time(EST) of each eligible task on each resource slot, the

following recursive equation is used:

3101 Khajehvand et al.: SCTTS: Scalable Cost-Time Trade-off Scheduling for WorkflowApplication in Grids

()
(,) max{ (,), max { (,) (,) (,)}}, , ,

i parentTasks j
EST j r EAT j r EST i q EET i q TFTC j r j eligibleTasks r q R

 (3)

where Estimated Available Time (EAT) is the available slot of resource r for executing task j.

The inner block of Eq.(3) is used for computing Earliest Finish Time(EFT) of immediate

predecessor tasks of the desired task. If the desired task has more than one immediate

predecessor task, the maximum EFT of immediate predecessor tasks will be considered as the

EST of immediate successor task. Eq.(3) computes the EST of each task in recursive and

bottom up approach so that it starts from computing the EST of the input task and finally ends

with computing the EST of the output task. Therefore, the EST of the input task is initialized

with simulation current time.

To obtain the EST of each task based on Eq. (3), the EFT of execution of each task will be

obtained:
(,) (,) (,), , .EFT j r EST j r EET j r j eligibleTasks r R (4)

The resource whose slots have the minimum allocation cost and execution finish time of an

eligible task, is obtained by Eq. (5). The value of alpha (α) is a number between 0 and 1 which

is considered as a constant trade-off factor. This trade-off factor shows the degree of the

significance of allocation cost to execution finish time
arg min{ (,) (1) (,)}, ,j

r R
P NEAC j r NEFT j r j eligibleTasks

 (5)

where eligibleTasks is a set of tasks whose execution of parents’ tasks have been completed.

NEAC and NEFT show normal values of EAC and EFT respectively obtained by the following

equation:
(,) min{ (,)}

(,) , ,
max{ (,)} min{ (, }

q R

q Rq R

EAC j r EAC j q
NEAC j r j eligibleTasks r R

EAC j q EAC j q

 (6)

(,) min{ (,)}
(,) , ,

max{ (,)} min{ (, }

q R

q Rq R

EFT j r EFT j q
NEFT j r j eligibleTasks r R

EFT j q EFT j q

 (7)

As the values range of both target parameters EAC and EFT differ from one another, values

normalization is important. After obtaining the best resource for executing each eligible task,

the task that minimizes cost metric of Eq. (8), is the task to be allocated to the best related

resource.
arg min { (,) (1) (,)}.j j

j eligibleTasks
selectedTask NEAC j p NEFT j p

 (8)

When all of the application tasks are allocated to the resources slots according to the

above-mentioned equations, the allocation cost and makespan of application will be computed

according to the two following equations:

(,),
j T r R

allocationCost EAC j r

 (9)

(1,) (0,).
r R r R

makespan EFT n r EST r

 (10)

The objective function of the workflow scheduling problem is a multi-objective one that is

obtained by minimizing the allocation cost and makespan. The objective function is stated as

the following equation:
min () { (1) }f x allocationCost makespan (11)

To solve the workflow scheduling problem, a heuristic algorithm is developed in the

section 3.2, based on the presented model in this section.

3.2 The Proposed SCTTS Heuristic Algorithm

To solve workflow scheduling problem, based on proposed SCTT model, the SCTTS heuristic

algorithm is developed. The proposed model schedules application tasks to optimize cost and

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 12, Dec. 2013 3102

Copyright ⓒ 2013 KSII

time on heterogeneous resources in a scalable manner. Details of the algorithm are described

in this section.

As the application is in the form of DAG, therefore, it is necessary to consider task

execution precedence during scheduling application tasks. Also, as the resources are selected

from a heterogeneous distributed environment, to execute the tasks, there are many options for

scheduling. Since in the scheduling process one seeks to optimize two objectives, cost and

time, so to show the degree of importance of one objective to another one, a trade-off factor is

necessary. The suitable slots are, therefore, selected according to objective function in Eq.

(11).

The SCTTS pseudo-code is shown in algorithm 1, which is based on the proposed SCTT

model. At first, the algorithm obtains the list of unscheduled tasks (line 1). Then, the

unscheduled tasks are scheduled in the process of executing lines 2 to 19. For scheduling the

tasks, a list of all eligible tasks to be executed is obtained (line 3). An eligible task is a task

whose execution of all of its parent tasks are completed. The best resource needs to be

obtained for executing each eligible task (lines 4 to 13). A list of all tasks which are parent

tasks of eligible task j is obtained according to line 5. To execute eligible task j, slots of the

available resource are examined (lines 6 to 11). In the process of line 7, the list of available

slots of resource r is obtained. File transfer cost for executing task j on resource r is computed

by Eq. (2) (line 8). According to Eqs. (3) and (4), EST and EFT of task j are computed on

resource slots r respectively (line 9 and 10). Having computed EST and EFT of task j on all

resources, we obtain the best resource according to Eq. (5) according to line 12. The algorithm

selects the task that minimizes objective function of Eq. (8) as the best task according to Eqs.

(5 to 7), (line 14). The best task is assigned to the best resource slots in order to be executed

(line 15). Having assigned the best task to the best resource, the available slots characteristics

need to be updated (lines 16 and 17). After scheduling the selected task, it needs to be deleted

from the unscheduled tasks list (line 18). At the end of the scheduling process of all the tasks,

the allocation task and makespan of the application are computed according to Eqs. (9) and

(10), (lines 20 and 21).

3.3 Time Complexity

Supposing that k is the average number of the time slots available to the resource j in time t and

n, m are the number of workflow tasks and the number of resources available to the system

respectively, the main operations during executing the algorithm SCTTS is as follows:

 In the worst case, the appropriate assignment of the time slots to workflow tasks is

repeated as many as the number of tasks as in lines 2 to 19, i.e. O(n).

 In each repetition of steps 4 to 13 eligible task are to be searched. As at any level of

workflow graph there are on average n nodes, so the order of its execution will

become O(n).

 In each repetition of steps 6 to 11, in the worst case, available time slots of each

resource will be obtained. Next, according to Eq.(3) and Eq.(4) EST and EFT are

obtained respectively. At the end of these steps the best resource will be obtain for

executing each task whose order of its execution will become O(mk).

Therefore, the resultant worst case time complexity of the SCTTS algorithm will be

O(n n mk).

3103 Khajehvand et al.: SCTTS: Scalable Cost-Time Trade-off Scheduling for WorkflowApplication in Grids

Algorithm 1: The pseudo-code for the SCTTS heuristic algorithm

Input:

Output:

An application characteristics

The reade-off fcator (α) is a number between 0 to 1

The resource characteristics and the available slots to each resource

A workflow application scheduling

1 unscheduledTasks = get the list of yet unscheduled tasks

2 While (list of unscheduledTasks is not empty) do

3 eligibleTasks = get the set of unscheduled ready tasks whose parent tasks have been

scheduled

4 for all j eligibleTasks do

5 parentTasks = find the set of tasks that are the parents of task j

6 for all Rer avail sources do

7 get the slots list available to resource r

8 get the required TFTC for executing task j on the slots of resource r

according to Eq. (2)

9 get the EST of task j on the slots of resource r according to Eq. (3)

10 get the EFT of task j on the slots of resource r according to Eq. (4)

11 end for

12 get the best resource for executing task j according to Eq. (5)

13 end for

14 get the best eligible task for allocating according to Eq. (8)

15 allocate the best eligible task to the best resource capable of executing it

16 update the slots available to the allocated resource

17 update EAT

18 delete the selected task from the unscheduled tasks list

19 end while

20 get the total allocation cost of application according to Eq. (9)

21 get the makespan of application according to Eq. (10)

3.4 The SCTTS Heuristic Example

Table 2 illustrates the SCTTS heuristic algorithm with a step-by-step explanation of the

mapping of tasks in a sample workflow in Fig. 1(a). The sample workflow has five tasks

denoted as v1, v2, v3, v4 and v5 with different execution time and data transfer requirements. As

a workflow can have sub-workflows with multiple entries and exits, it is necessary to add two

pseudo tasks i.e. a top task (v0) and a bottom task (v6), with zero execution time as Fig. 1(a)

shows. While the top task spawns all actual entry tasks, the bottom task joins all actual exit

tasks. Fig. 1(a) shows the output data of each task. The Table 1 shows the EET and EAC of

each task. The tasks can be mapped to the slots of three Grid resources r1, r2 and r3 with

different processing capability and transfer capacity.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 12, Dec. 2013 3104

Copyright ⓒ 2013 KSII

(a) A sample workflow task graph

with 7 tasks

 (b) Task graph scheduling using

SCTTS heuristic algorithm

Fig. 1. An example workflow and associated task scheduling using SCTTS heurestic algorithm

Table 1. The workflow task execution characteristics

Workflow task

Estimated Execution Time (EET)

of task on the slots of a resource

Estimated Allocation Cost (EAC)

of task on the slots of a resource

r1 r2 r3 r1 r2 r3

v0 0 0 0 0 0 0

V1 10 6.25 5 10 12.5 15

v2 2 1.25 1 2 2.5 3

v3 14 8.75 7 14 17.5 21

v4 6 3.75 3 6 7.5 9

v5 3.2 2 1.6 3.2 4 4.8

v6 0 0 0 0 0 0

First, the parents’ tasks of each eligible task is obtained as shown in Table 2. Using the

proposed model, EAT, TFTC, EST and EFT of each eligible task is calculated, (Section 3.1).

Using the obtained values, we obtain NEAC and NEFT i.e. Eqs. (6) and (7) which are normal

values of EAC and EFT respectively. Having computed EST and EFT of task j on all resources,

we obtain the best resource slot according to Eq. (5) for each step. The algorithm selects the

task that minimizes objective function of Eq. (8) as the best task according to Eqs. (5 to 7). The

best task is assigned to the best resource slot for being executed. Having assigned the best task

to the best resource, the available slots characteristics need to be updated. After scheduling the

selected task, it needs to be deleted from the unscheduled tasks list. This process will be

repeated for all steps. In the end of the scheduling all the tasks, the allocation task and

makespan of the workflow will be computed according to Eqs. (9) and (10). Table 2 illustrates

the SCTTS heuristic algorithm with a step-by-step explanation of the mapping of each task on

the resource slot.

3105 Khajehvand et al.: SCTTS: Scalable Cost-Time Trade-off Scheduling for WorkflowApplication in Grids

Table 2. Step-by-step explanation of SCTTS heurestic algorithm

S
tep

E
lig

ib
le task

s

P
aren

t task
s EAT TFTC EST EFT NEAC NEFT

S
elected

 reso
u

rce

S
elected

 task

r
1

r
2

r
3

r
1

r
2

r
3

r
1

r
2

r
3

r
1

r
2

r
3

r
1

r
2

r
3

r
1

r
2

r
3

1

v1 {v0} 0 0 0 0 0 0 0 0 0 10

6.

3 5 0 0.5 1 1 0.3 0

r2 v1 v2 {v0} 0 0 0 0 0 0 0 0 0 2

1.

3 1 0 0.5 1 1 0.3 0

2

v2 {v0} 0

6.

3 0 0 0 0 0 6.3 0 2

7.

5 1 0 0.5 1 0.2 1 0

r1 v2 v4 {v1} 0

6.

3 0 10 0 10

6.

3 6.3 6.3 22 10 19 0 0.5 1 1 0 0.8

3

v3 {v1,v2} 2

6.

3 0 14 14 14 20 20 20 34 29 27 0 0.7 1 1 0.8 0

r2 v4 v4 {v1} 2

6.

3 0 10 0 10 16 6.3 16 22 10 19 0 0.5 1 1 0 0.8

4 v3 {v1,v2} 2 10 0 14 14 14 16 24 20 30 33 27 0 0.7 1 0.5 1 0 r1 v3

5 v5 {v2,v3} 30 30 30 0 15 15 30 45 45 33 47 47 0 0.5 1 0 1 1 r1 v5

 As an illustration, Fig. 1(b) presents the scheduling of the workflow tasks obtained by the

SCTTS heuristic algorithm for the sample workflow of Fig. 1(a). The execution makespan and

allocation cost are 33.2 and 39.2 respectively.

4. Environment Simulation Setup

In this section, we study simulation environment characteristics. The Grids testbed platform

environment which is modeled in this simulation, consists of ten sites of a subset of European

Data Grid (EDG) spread across five countries which are interconnected via high-speed

network links [20, 39]. The mean bandwidth value of the resources is 10 Gb/s with a mean

latency time of 150 s. Table 3 shows the resources configuration on the grid testbed in order to

simulate the distribution system including the cost of using a processor, CPU rating, number of

CPUs and site-location of each resource. Each resource configuration is selected so that

modeled environment reflects resource heterogeneity [20].

The workload simulated on these sites is based on the workload model generated by Lublin

[40]. The main purpose of using this model is to create a more realistic simulation environment

where the tasks compete with each other. Table 4 shows the workload parameters values

applied to in the Lublin model.

Table 3. Simulated EDG testbed resources
Site name (Location) Number of CPUs Single CPU

rating(MIPS)

 Processing

cost(G$)
RAL(UK) 20 1140 0.0061

Imperial College(UK) 26 1330 0.1799

NorduGrid(Norway) 265 1176 0.0627

NIKHEF(Netherlands) 54 1166 0.0353

Lyon(France) 60 1320 0.1424

Milano(Italy) 135 1000 0.0024

Torina(Italy) 200 1330 1.856

Catania(Italy) 252 1200 0.1267

Padova(Italy) 65 1000 0.0032

Bologna(Italy) 100 1140 0.0069

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 12, Dec. 2013 3106

Copyright ⓒ 2013 KSII

Table 4. Lublin workload model parameter values
Workload parameter

 Description Value

JobType The type of job Batch Jobs

P Maximum number of CPUs required by a job 1000

uHi It is the default log2 of the maximum number of CPUs required by a parallel job Log2(p)

uMed It is the default log2 of the medium size of parallel jobs in the system. Note that

uMed should be in [uHi-1.5, uHi-3.5]

 uHi-1.5

Other parameters As presented by Lublin model -

To conduct experiments, parameterized graph generator is used for creating a synthetic

workflow [32]. Table 5 shows the workflow application characteristics as in [9].

Table 5. Workflow application characteristics
Workflow characteristics

 Value

The number of tasks in the workflow application (n) 100

The average runtime of each task 1000 sec

The average number of processors per task 25

The average depth of the workflow graph n

The average number of tasks per level n

The mean value of data transfer among the tasks 1000 Gb

A benchmark application scheduling algorithm that uses the best-effort QoS for scheduling

is simulated and tagged as the BE. In the BE, the exploited heuristic method selects a resource

with the minimum number of tasks in the waiting and running queues [9].

A different benchmark application scheduling algorithm using cost model, is presented by

Singh et al. [8, 9]. Their algorithm has provisioned a set of slots to optimize performance under

minimum allocation cost in order to execute application on provisioned slots. This

cost-modeled algorithm manages a trade-off between makespan and allocation cost based on

the trade-off factor. Also scheduling is conducted using multi-objective genetic algorithm [41].

It is tagged as the MOGA for brevity [8, 9].

For our experiments, we use the GridSim [42-44] to simulate both benchmark algorithms,

testbed platform environment and workload on an Intel Core 2 Duo CPU T9600, 2.80 GHz

computer.

We compare our proposed heuristic denoted as SCTTS with the MOGA and BE algorithms

by conducting a number of experiments, in which we simulate a variety of real-world

scenarios. The three performance metrics used to evaluate the scheduling approaches are the

average makespan, allocation cost and runtime. In next section the obtained simulation results

will thoroughly be analyzed.

5. Results Analysis

This section involves a comparison and analysis of the application performance results with

objectives such as the makespan, allocation-cost and runtime of the proposed SCTTS

algorithm along with the MOGA and the BE algorithms [8, 9]. Also, it will show how the

proposed heuristic schedules the application on the distributed resources at the same time,

optimizing the makespan and allocation cost in minimum runtime. According to the

mentioned characteristics in section 4, a synthetic workflow application is produced with

“trade-off factor=0.5” [8, 9]. The rest of the simulation parameters is compatible with the

setup in section 4. The Y-axis is drawn in logarithmic scale to make the results discernible
.

3107 Khajehvand et al.: SCTTS: Scalable Cost-Time Trade-off Scheduling for WorkflowApplication in Grids

5.1 The Trade-off Factor Impact

This section examines an experiment conducted for studying the variability impact of the

trade-off factor on the makespan and allocation-cost whose results will be analyzed. Fig. 2

shows the variability impact of the trade-off factor on allocation-cost of three algorithms: the

SCTTS, the MOGA and the BE on the heterogeneous resources. Obviously, in all instances

except when the trade-off factor is zero, the allocation cost of the SCTTS algorithm becomes

less than both the BE and MOGA algorithms. There seems to be an abnormality in “trade-off

factor=0” however, it is not true as the workflow scheduler is seeking a resource with the

lowest time, whereas the allocation-cost is insignificant. In other words, according to the cost

metric of Eq. (8), the allocation-cost will have no effect.

Fig. 3 shows the variability impact of the trade-off factor on the makespan during the

workflow scheduling using three algorithms: the SCTTS, MOGA and BE on the heterogeneous

resources. In all cases, except when the trade-off factor is equal to 1, the makespan of the

SCTTS algorithm `is less than both the MOGA and BE algorithms. The abnormality which

develops in “trade-off factor=1” is logical, because the workflow scheduler seeks resource

slots with the minimum allocation cost for assigning a single task, whereas the execution time

is insignificant, that is, according to the cost metric definition of Eq. (8), the makespan will

have no effect. According to the cost metric function, both objectives are to be considered.

Observing simultaneously Fig. 2 and Fig. 3 indicates the SCTTS algorithm can obtain the best

solution in all cases. Therefore, the proposed approach can be used for solving the allocation

cost optimization, makespan optimization and cost-makespan optimization. We included the

confidence intervals in the simulation results in appendix 1 of the manuscript. Moreover, to

reinforce the statistical level of the results, paired sample t-test are conducted and reported. It

is worth mentioning that these statistical results are only provided for this section to

statistically show the superiority of the proposed algorithm.

Fig. 2. Variability impact of the trade-off factor on

workflow allocation cost

Fig. 3. Variability impact of the trade-off factor on

workflow makespan

5.2 Impact of The Workflow Size on The Performance

A few experiments have been conducted to determine the impact of the workflow size on the

allocation cost, makespan and runtime in terms of the number of the application tasks. It is

followed by an analysis of the comparison between the SCTTS, MOGA and BE algorithms. In

these experiments, the application characteristics are similar to those in section 4. The

experiments were conducted with the application tasks’ sizes of 25, 50, 100, 200, 300 and 500

in order to study its impact on the allocation cost, makespan and runtime in the application

scheduling according to the increasing number of the application tasks.

Fig. 4 and Fig. 5 show the impact of the workflow size on the allocation cost and makespan

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 12, Dec. 2013 3108

Copyright ⓒ 2013 KSII

in the application scheduling, respectively. As Fig. 4 and Fig. 5 indicate that the allocation

cost and makespan of the proposed algorithm in all instances are around 82% and 31% less

than the MOGA algorithm, respectively and also, one order of magnitude less than the BE

algorithm. The low cost and makespan in the proposed algorithm is explained by the fact that it

selects a slot with the minimum start-time for running the eligible task from the whole existing

slots according to the cost metric of Eq. (8). However, the MOGA algorithm randomly selects

a subset of the slots for scheduling the whole tasks. According to the existing data dependency

among workflow tasks, if the execution of an eligible task is postponed, it will result in

lengthening the makespan. In the BE algorithm, as long as the executions of the parent tasks

are not completed, child-tasks will not be submitted. As the workflow graph depth is n , the

higher the number of the tasks (n) are, the deeper the workflow will be. Eventually, an increase

in the workflow graph depth causes an increase in the number of the times a task needs to wait,

resulting in an increase in the makespan.

Fig. 4. Workflow size impact on workflow

allocation cost

Fig. 5. Workflow size impact on workflow

makespan

Fig. 6 shows the SCTTS, MOGA and BE algorithms’ runtime relative to an increase in the

number of the application tasks. As the figure shows, the proposed algorithm in all instances of

an execution is almost three orders of magnitude less than the MOGA and the BE algorithms.

The low time-complexity of the proposed algorithm is explained by the fact that it seeks the

best slot for a single task just once, while the MOGA algorithm is implemented based on the

genetic algorithm repetitively. One of the disadvantages of the genetic algorithms is length of

their runtime. Moreover, in order to seek a subset of proper slots, the MOGA algorithm needs

to repetitively plan the whole chromosomes of each generation of the population so that the

best solution of each generation can be selected. The whole process involves a very high

time-complexity. Therefore, the higher the number of the application tasks, the longer the

runtime of the algorithm is. According to Fig. 6, if the number of the workflow tasks increases

from 300 tasks to 500 tasks in the MOGA algorithm, its runtime will increase around one order

of magnitude. The BE algorithm employs the best-effort service while disregarding the cost

metric optimization. After the execution of all parent tasks of the corresponding task are

completed, the execution of the desired task will cause the runtime to lengthen.

3109 Khajehvand et al.: SCTTS: Scalable Cost-Time Trade-off Scheduling for WorkflowApplication in Grids

Fig. 6. Workflow size impact on application runtime

According to Fig. 6, due to an increase in the application tasks even when it is running 500

tasks, the SCTTS algorithm requires much lower runtime. The runtime required by the SCTTS

algorithm is around 6.7 second for 500 tasks to be executed, whereas in the MOGA algorithm,

the application runtime lasts almost one hour and twenty minutes. As a result, the SCTTS

algorithm is scalable caused by an increase in the application tasks as well as capable of

scheduling huge applications with the lowest runtime in a heterogeneous environment.

5.3 Impact of The Task Size on Performance

In this section, a few experiments were conducted for studying impact of a task size on the

allocation cost, makespan and runtime of the scheduling algorithms. Next, the SCTTS, MOGA

and BE algorithms are compared to one another. The task size is the number of the required

processors all of which need to be available for execution. In these experiments, the

application characteristics are the same as the ones in section 4 taking into account the average

number of the required processors of each task: 1, 5, 10, 25, 50, 75 and 100, respectively. The

higher the average number of the required processors for application tasks are, the higher the

degree of the task parallelism is. These experiments are intended to study the impact of an

increase in the application tasks parallelism on the allocation cost, makespan and runtime.

Fig. 7 shows impact of a task size on the allocation cost of the application scheduling. As

Fig. 7 indicates the allocation cost of the SCTTS algorithm decreases more than 60%

compared to the MOGA algorithm due to an increase in the degree of the tasks parallelism in

all instances. Also, the allocation cost of the SCTTS algorithm decreases in all instances almost

one order of magnitude compared to the BE algorithm caused by an increase in the degree of

the tasks parallelism. Fig. 8 shows impact of a task size on the makespan in the application

scheduling. According to Fig. 8, the makespan of the SCTTS algorithm is better than the

MOGA algorithm in terms of an increase in the degree of task parallelism in all instances.

However, due to the fact that an increase in the degree of the task parallelism, the makespan of

the SCTTS and MOGA algorithms decreases one order of magnitude in all instances compared

to the BE algorithm. Thus, a concurrent observation of Fig. 7 and Fig. 8 in corresponding

cases, demonstrates that the SCTTS algorithm has a better performance compared to both BE

and MOGA algorithms.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 12, Dec. 2013 3110

Copyright ⓒ 2013 KSII

Fig. 7. Task size impact on application allocation

cost

Fig. 8. Task size impact on application makespan

Fig. 9 shows the impact of a task size on the runtime in the application scheduling. As Fig.

9 shows the SCTTS algorithm runtime is at least three orders of magnitude less than the BE and

MOGA algorithms in all instances. It is observed in Fig. 9, when the results of the BE and

MOGA algorithm are compared, the abnormalities appear, that is, the runtime of the BE

algorithm takes less time than the MOGA algorithm does as long as the average number of the

required task processors remains less than 10. The abnormalities are due to the resource

scheduling policy in the BE algorithm which is based on the best effort quality of service.

Similarly, because of the low degree of the tasks parallelism, there are many ready slots for

running each single task. Therefore, in such circumstances, the BE algorithm is more suitable

than the MOGA algorithm in terms of the runtime. However, once the average number of the

required tasks processors exceeds 10 processors, the runtime of the BE algorithm increases

one order of magnitude compared to the MOGA algorithm. It is explained by the fact that the

BE algorithm submits each single task to a resource with the least number of tasks in waiting

and running queues. Also, the BE algorithm cannot schedule the tasks with a higher degree of

the tasks parallelism in an earlier start-time. As a result, waiting time for the fulfillment of the

parent task of each single task will become longer which results in a longer runtime.

Fig. 9. Task size impact on workflow runtime

The importance of the experiments is shown by the fact that the impact of the results of an

increase in the degree of the tasks parallelism becomes clear. As the results of Fig. 7, Fig. 8

and Fig. 9 show, the SCTTS algorithm may deliver a better performance for scheduling the

applications with higher degrees of the task parallelism that optimizes the cost-makespan.

5.4 Impact of The Number of Resources

A few experiments are also conducted for studying the impact of the number of the resource

providers on the allocation cost, makespan and runtime of the algorithms. The performances

of the SCTTS, MOGA and BE algorithms were compared. In these experiments the application

3111 Khajehvand et al.: SCTTS: Scalable Cost-Time Trade-off Scheduling for WorkflowApplication in Grids

characteristics are as the same as the ones in section 4. The experiments are conducted on a

number of different resource providers. According to Table 3, firstly, the experiments are

conducted on the first three resources, secondly, on the first five resources, next, on the first

seven resources after that, on the first nine resources and finally, on the entire ten resources.

The impact associated with the different numbers of the resources on the allocation cost,

makespan and runtime in the application scheduling are to be considered.

Fig. 10 shows the impact of the different numbers of the resources on the allocation cost.

The cost of the proposed algorithm is almost 40% lower than that of the MOGA algorithm as

well as one order of magnitude of the BE algorithm in all cases, except in case, there are 3 and

5 resources. As Fig. 10 indicates, with an increase in the number of resources, there is an

increase in the allocation cost of the MOGA algorithm compared to the SCTTS algorithm. This

increase in the cost is explained by the fact that an increase in the number of resources results

in an increase in the number of slots, bearing it in mind that the MOGA algorithm is

implemented by a genetic algorithm. The number of the slots constitutes the number of the

solution chromosomes’ genes. As a result, with an increase in the number of the resources,

there will be an increase in the number of the genes. Thus the algorithm is trapped in the local

optimized solutions.

Fig. 11 shows the impact of the number of the resources on the makespan. The makespan

of the proposed algorithm is 14% lower than that of the MOGA algorithm as well as one order

of magnitude compared to the BE algorithm.

Fig. 10. Impact of the number of resources on

workflow allocation cost

Fig. 11. Impact of the number of resources on

workflow makespan

Having concurrently observed Fig. 10 and Fig. 11 in corresponding instances, it is

understood that in all instances the SCTTS algorithm gives a better performance compared to

both MOGA and BE algorithms. Hence, the CTTS algorithm is scalable relative to an increase

in the number of the resources. The allocation cost and makespan of the BE algorithm rises

with a higher rate compared to both MOGA and CTTS algorithms according to an increase in

the number of the resources. This rise is explained by the fact that the BE algorithm selects a

resource for running the task with the lowest number of the waiting and running queues. As a

result, the higher the number of the resources are, the more the available selections will be.

Due to an increase in the number of the resource selections, it is likely that a resource selected

for running a task, will be different to the resources which had run the parents’ tasks of the task.

The explanation is that the BE algorithm almost ignores the data transfer minimization. As a

result, the algorithm will be exposed to the data transfer cost from the resource which has

executed the parent task to the resource which executes the child task. Eventually, there will be

an increase in the allocation-cost and makespan.

Fig. 12 shows the impact of the number of the resources on the runtime of the algorithms.

In all cases, the runtime of the proposed algorithm is as many as four orders of magnitude

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 12, Dec. 2013 3112

Copyright ⓒ 2013 KSII

lower than both MOGA and BE algorithms. The long runtime of the MOGA algorithm is

explained by the fact that the MOGA algorithm is a genetic-based algorithm which generally

suffers from the disadvantage of a longer runtime. The longer runtime of the BE algorithm

explains that each task needs to wait for its parents’ tasks to be completed. According to Fig.

12, although, the number of the resources increases, the runtime of the SCTTS algorithm

remains constant. As a result, the SCTTS algorithm becomes scalable due to an increase in the

heterogeneous resources of the grid environment. Therefore, the SCTTS algorithm can

schedule the application in a more effective time.

Fig. 12. Impact of the number of the resources on application runtime

6. Conclusion and Future Works

This paper presents both the scalable SCTT model and the scalable SCTTS heuristic algorithm

for scheduling parallel workflow application tasks in Utility Grids while optimizing the

allocation cost and makespan. The results of the present study show the SCTTS algorithm is

scalable caused by an increase in the workflow size, task parallelism and heterogeneous

resources.

We also compared the SCTTS algorithm with the present best-effort and genetic-based

algorithms. We evaluated the sensitivity of the SCTTS algorithm by the changes made in the

degree of the significance of allocation cost and execution time. Also, the results show the

proposed algorithm is scalable caused by an increase in the workflow size, task parallelism

and heterogeneous resources with the lowest runtime. We conducted a few experiments on

studying the impact of a workflow, task and resource sizes on the cost, makespan and runtime

and we found that the proposed algorithm delivers a better performance for scheduling with

higher degrees of the task parallelism.

A future extension of the work will consider the effect of uncertainties in the task runtime

estimates. In the current model, we have assumed that the workflow tasks runtimes are known

accurately. However, the task runtimes might be stochastic. This adds another variable to the

problem. Ideally, we intend to provision more resources, since if the slot expires before the

task completes, we will lose all the work. As an another extention, we intend to consider

makespan, cost reliability, avalability and their combinations as resource utilization.

Appendix 1

To compare our results statistically with other algorithms, we have used paired samples t-test

through the SPSS software. Our statistical analysis are shown in Tables 6, 7 and 8. In these

tables, *** denotes significant difference at 0.1% level, ** denotes significant difference at

5% level and * denotes significant difference at 10% level. The results show that proposed

algorithm outperforms other algorithms. It is worth mentioning that these statistical results are

3113 Khajehvand et al.: SCTTS: Scalable Cost-Time Trade-off Scheduling for WorkflowApplication in Grids

only provided for section 5.1 to statistically show the superiority of the proposed algorithm.

In Tables 6, 7 and 8 pair 1 is the difference between the cost of BE algorithm and the cost

of SCTTS algorithm, pair 2 is the difference between the cost of MOGA algorithm and the cost

of SCTTS algorithm, pair 3 is the difference between the makespan of BE algorithm and the

makespan of SCTTS algorithm, pair 4 is the difference between the makespan of MOGA

algorithm and the makespan of SCTTS algorithm, pair 5 is the difference between the runtime

of BE algorithm and the runtime of SCTTS algorithm and pair 6 is the difference between the

runtime of MOGA algorithm and the runtime of SCTTS algorithm.

Table 6. Paired sample t test when trade-off factor is equal with 0.0

Paired Samples Test

Paired Differences

T

Sig.

(2-tailed) Mean

95% Confidence Interval of

the Difference

Lower Upper

Pair 1 CostBE - CostSCTTS 2.16537E6 1.66850E6 2.66225E6 9.858 0.000***

Pair 2 CostMOGA - CostSCTTS -23015.29417 -4.20010E5 3.73980E5 -0.131 0.899

Pair 3 MakespanBE - MakespanSCTTS 902.31767 836.80795 967.82739 31.158 0.000***

Pair 4 MakespanMOGA - MakespanSCTTS 29.09042 8.93158 49.24926 3.264 0.010**

Pair 5 RuntimeBE - RuntimeSCTTS 5.20223E5 4.87467E5 5.52979E5 35.927 0.000***

Pair 6 RuntimeMOGA - RuntimeSCTTS 1.88239E5 1.13513E5 2.62964E5 5.699 0.000***

Table 7. Paired sample t test when trade-off factor is equal with 0.5

Paired Samples Test

Paired Differences

T

Sig.

(2-tailed) Mean

95% Confidence Interval of

the Difference

Lower Upper

Pair 1 CostBE - CostSCTTS 2.97428E6 2.90603E6 3.04253E6 98.582 .000***

Pair 2 CostMOGA - CostSCTTS 1.13457E5 -8318.57441 2.35232E5 2.108 .064*

Pair 3 MakespanBE - MakespanSCTTS 893.91033 835.29830

6.88362

952.52235 34.501

3.071

.000***

.013**
Pair 4 MakespanMOGA - MakespanSCTTS 26.12825 45.37288

Pair 5 RuntimeBE - RuntimeSCTTS 5.20195E5 4.87454E5 5.52937E5 35.941 .000***

Pair 6 RuntimeMOGA - RuntimeSCTTS 1.88210E5 1.13489E5 2.62932E5 5.698 .000***

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 12, Dec. 2013 3114

Copyright ⓒ 2013 KSII

Table 8. Paired sample t test when trade-off factor is equal with 1.0

Paired Samples Test

Paired Differences

T

Sig.

(2-tailed) Mean

95% Confidence Interval of

the Difference

Lower Upper

Pair 1 COSTBE - COSTSCTTS 3.09730E6 3.06734E6 3.12727E6 233.830 .000***

Pair 2 COSTMOGA - COSTSCTTS 1.50860E5 63882.40834 2.37838E5 3.924 .003**

Pair 3 MakespanBE - MakespanSCTTS 793.92802 686.14602 901.71003 16.663 .000***

Pair 4 MakespanMOGA - MakespanSCTTS -64.22142 -142.39863 13.95580 -1.858 .096*

Pair 5 RuntimeBE - RuntimeSCTTS 5.20251E5 4.87496E5 5.53006E5 35.930 .000***

Pair 6 RuntimeMOGA - RuntimeSCTTS 1.88266E5 1.13528E5 2.63005E5 5.698 .000***

 References

[1] T. Eilam, K. Appleby, J. Breh, G. Breiter, H. Daur, S. Fakhouri, et al., "Using a utility

computing framework to develop utility systems," IBM Systems Journal, vol. 43, pp. 97-120,

2004. Article (CrossRef Link).

[2] E. Deelman, S. Callaghan, E. Field, H. Francoeur, R. Graves, N. Gupta, et al., "Managing

large-scale workflow execution from resource provisioning to provenance tracking: The

cybershake example," in Proc. of the Second IEEE international Conference on E-Science and

Grid Computing Amsterdam, Netherlands, 2006. Article (CrossRef Link).

[3] D. S. Katz, J. C. Jacob, G. B. Berriman, J. Good, A. C. Laity, E. Deelman, et al., "A

comparison of two methods for building astronomical image mosaics on a grid," in Proc. of the

34th International Conference on Parallel Processing Workshops (ICPP 2005 Workshops),

Oslo, Norway, 2005. Article (CrossRef Link).

[4] E. Deelman, C. Kesselman, G. Mehta, L. Meshkat, L. Pearlman, K. Blackburn, et al.,

"GriPhyN and LIGO, building a virtual data grid for gravitational wave scientists," in Proc. of

11th IEEE International Symposium on High Performance Distributed Computing

(HPDC-11), Edinburgh, Scotland, UK, 2002. Article (CrossRef Link).

[5] J. Yu and R. Buyya, "A taxonomy of workflow management systems for grid computing,"

Journal of Grid Computing, vol. 3, pp. 171-200, 2005. Article (CrossRef Link).

[6] M. Wieczorek, A. Hoheisel, and R. Prodan, "Towards a general model of the multi-criteria

workflow scheduling on the grid," Future Generation Computer Systems, vol. 25, pp. 237-256,

2009. Article (CrossRef Link).

[7] J. Yu, M. Kirley, and R. Buyya, "Multi-objective planning for workflow execution on Grids,"

in GRID '07 Proc. of the 8th IEEE/ACM International Conference on Grid Austin, Texas, USA,

2007, pp. 10-17. Article (CrossRef Link).

[8] G. Singh, C. Kesselman, and E. Deelman, "A provisioning model and its comparison with

best-effort for performance-cost optimization in grids," in Proc. of the 16th international

symposium on High performance distributed computing, Monterey, CA, USA, 2007, pp.

117-126. Article (CrossRef Link).

[9] G. Singh, C. Kesselman, and E. Deelman, "An end-to-end framework for provisioning-based

resource and application management," Systems Journal, IEEE, vol. 3, pp. 25-48, 2009.

Article (CrossRef Link).

[10] E. Jeannot, E. Saule, and D. Trystram, "Optimizing performance and reliability on

heterogeneous parallel systems: Approximation algorithms and heuristics," Journal of

3115 Khajehvand et al.: SCTTS: Scalable Cost-Time Trade-off Scheduling for WorkflowApplication in Grids

Parallel and Distributed computing, vol. 72, pp. 268-280, 2012. Article (CrossRef Link).

[11] J. Yu, R. Buyya, and C. K. Tham, "Cost-based scheduling of scientific workflow applications

on utility grids," in Proc. of the first International Conference on e-Science and Grid

Technologies (e-Science 2005), Melbourne, Australia, 2005, pp. 140-147. Article (CrossRef

Link).

[12] J. Yu and R. Buyya, "Scheduling scientific workflow applications with deadline and budget

constraints using genetic algorithms," Scientific Programming, vol. 14, pp. 217-230, 2006.

Article (CrossRef Link).

[13] R. Sakellariou, H. Zhao, E. Tsiakkouri, and M. Dikaiakos, "Scheduling workflows with budget

constraints," Integrated Research in Grid Computing, pp. 189-202, 2007. Article (CrossRef

Link).

[14] R. Prodan and M. Wieczorek, "Bi-criteria scheduling of scientific grid workflows,"

Automation Science and Engineering, IEEE Transactions on, vol. 7, pp. 364-376, 2010.

Article (CrossRef Link).

[15] M. Wieczorek, S. Podlipnig, R. Prodan, and T. Fahringer, "Bi-criteria Scheduling of Scientific

Workflows for the Grid," in Proc. of Cluster Computing and the Grid, 2008. CCGRID '08. 8th

IEEE International Symposium on, 2008, pp. 9-16. Article (CrossRef Link).

[16] S. Abrishami, M. Naghibzadeh, and D. H. Epema, "Cost-driven scheduling of grid workflows

using partial critical paths," Parallel and Distributed Systems, IEEE Transactions on, vol. 23,

pp. 1400-1414, 2012. Article (CrossRef Link).

[17] S. Abrishami, M. Naghibzadeh, and D. Epema, "Cost-driven scheduling of grid workflows

using partial critical paths," in Proc. of Grid Computing (GRID), 2010 11th IEEE/ACM

International Conference on, 2010, pp. 81-88. Article (CrossRef Link).

[18] J. J. Dongarra, E. Jeannot, E. Saule, and Z. Shi, "Bi-objective scheduling algorithms for

optimizing makespan and reliability on heterogeneous systems," in Proc. of the nineteenth

annual ACM symposium on Parallel algorithms and architectures, 2007, pp. 280-288. Article

(CrossRef Link).

[19] I. Brandic, S. Benkner, G. Engelbrecht, and R. Schmidt, "QoS support for time-critical grid

workflow applications," in Proc. of e-Science and Grid Computing, 2005. First International

Conference on, 2005, pp.10 8-115. Article (CrossRef Link).

[20] S. K. Garg, R. Buyya, and H. J. Siegel, "Time and cost trade-off management for scheduling

parallel applications on Utility Grids," Future Generation Computer Systems, vol. 26, pp.

1344-1355, 2010. Article (CrossRef Link).

[21] G. Singh, C. Kesselman, and E. Deelman, "Application-level resource provisioning on the

grid," in Proc. of E-SCIENCE '06 the Second IEEE International Conference on e-Science and

Grid Computing Amsterdam, The Netherlands, 2006, pp. 83-91. Article (CrossRef Link).

[22] G. Juve, E. Deelman, K. Vahi, G. Mehta, B. Berriman, B. Berman, et al., "Scientific workflow

applications on Amazon EC2," 2010, pp. 59-66. Article (CrossRef Link).

[23] G. Juve, E. Deelman, K. Vahi, G. Mehta, B. Berriman, B. Berman, et al., "Data Sharing

Options for Scientific Workflows on Amazon EC2," 2010, pp. 1-9. Article (CrossRef Link).

[24] J. D. Ullman, "NP-complete scheduling problems," Journal of Computer and System Sciences,

vol. 10, pp. 384-393, 1975. Article (CrossRef Link).

[25] D. Feitelson and L. Rudolph, "Parallel job scheduling: Issues and approaches," in Proc. of 1st

Workshop on Job Scheduling Strategies for Parallel Processing, Santa Barbara, CA, 1995, pp.

1-18. Article (CrossRef Link).

[26] D. Feitelson, L. Rudolph, U. Schwiegelshohn, K. Sevcik, and P. Wong, "Theory and practice

in parallel job scheduling," in Proc. of 3rd Workshop on Job Scheduling Strategies for Parallel

Processing, Geneva, Switzerland, 1997, pp. 1-34. Article (CrossRef Link).

[27] F. Xhafa and A. Abraham, "Computational models and heuristic methods for Grid scheduling

problems," Future Generation Computer Systems, vol. 26, pp. 608-621, 2010. Article

(CrossRef Link).

[28] J. Yu, R. Buyya, and K. Ramamohanarao, "Workflow scheduling algorithms for grid

computing," Metaheuristics for Scheduling in Distributed Computing Environments, vol. 146,

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 12, Dec. 2013 3116

Copyright ⓒ 2013 KSII

pp. 173-214, 2008. Article (CrossRef Link).

[29] T. D. Braun, H. J. Siegel, N. Beck, L. L. Bölöni, M. Maheswaran, A. I. Reuther, et al., "A

comparison of eleven static heuristics for mapping a class of independent tasks onto

heterogeneous distributed computing systems," Journal of Parallel and Distributed computing,

vol. 61, pp. 810-837, 2001. Article (CrossRef Link).

[30] G. Falzon and M. Li, "Enhancing list scheduling heuristics for dependent job scheduling in

grid computing environments," The Journal of Supercomputing, vol. 59, pp. 104-130, 2012.

Article (CrossRef Link).

[31] J. Yu, R. Buyya, and K. Ramamohanarao, "Workflow scheduling algorithms for grid

computing," Technical Report, Grids-TR-2007-10, Grid Computing and Distributed Systems

Laboratory, The University of Melbourne, Australia, pp.173-214, 2007. Article (CrossRef

Link).

[32] H. Topcuoglu, S. Hariri, and M. Wu, "Performance-effective and low-complexity task

scheduling for heterogeneous computing," IEEE Transactions on Parallel and Distributed

Systems, vol. 13, pp. 260-274, 2002. Article (CrossRef Link).

[33] D. P. Spooner, J. Cao, S. A. Jarvis, L. He, and G. R. Nudd, "Performance-aware workflow

management for Grid computing," The Computer Journal, vol. 48, pp. 347-357, 2005. Article

(CrossRef Link).

[34] E. S. H. Hou, N. Ansari, and H. Ren, "A genetic algorithm for multiprocessor scheduling,"

Parallel and Distributed Systems, IEEE Transactions on, vol. 5, pp. 113-120, 1994. Article

(CrossRef Link).

[35] G. Falzon and M. Li, "Enhancing genetic algorithms for dependent job scheduling in grid

computing environments," The Journal of Supercomputing, vol. 62, pp. 290-314, 2012. Article

(CrossRef Link).

[36] V. Khajevand, H. Pedram, and M. Zandieh, "Provisioning-Based Resource Management for

Effective Workflow Scheduling on Utility Grids," in Proc. of Cluster, Cloud and Grid

Computing (CCGrid), 2012 12th IEEE/ACM International Symposium on, Ottawa, Canada,

2012, pp. 719-720. Article (CrossRef Link).

[37] V. Khajehvand, H. Pedram, and M. Zandieh, "Cost and Makespan Trade-off Management for

Scheduling Workflow on Utility Grids," International Journal of Applied Research on

Information Technology and Computing (IJARITAC), vol. 3, pp. 89-98, 2012. Article

(CrossRef Link).

[38] J. Yu, R. Buyya, and C. K. Tham, "Cost-based scheduling of scientific workflow application

on utility grids," in Proc. of First International Conference on e-Science and Grid

Technologies (e-Science'05), Melbourne, Australia, 2005, pp. 140-147. Article (CrossRef

Link).

[39] W. Hoschek, J. Jaen-Martinez, A. Samar, H. Stockinger, and K. Stockinger, "Data

management in an international data grid project," in Proc. of Grid Computing - GRID 2000:

First IEEE/ACM International Workshop, Bangalore, India, 2000, pp. 333-361. Article

(CrossRef Link).

[40] U. Lublin and D. G. Feitelson, "The workload on parallel supercomputers: modeling the

characteristics of rigid jobs," Journal of Parallel and Distributed Computing, vol. 63, pp.

1105-1122, 2003. Article (CrossRef Link).

[41] C. M. Fonseca and P. J. Fleming, "Genetic algorithms for multiobjective optimization:

Formulation, discussion and generalization," in Proc. of the 5th International Conference on

Genetic Algorithms, Urbana-Champaign, IL, USA, 1993, pp. 416–423. Article (CrossRef

Link).

[42] R. Buyya and M. Murshed, "Gridsim: A toolkit for the modeling and simulation of distributed

resource management and scheduling for grid computing," Concurrency and Computation:

Practice and Experience, vol. 14, pp. 1175-1220, 2002. Article (CrossRef Link).

[43] A. Caminero, A. Sulistio, B. Caminero, C. Carri n, and R. Buyya, "Extending GridSim with

an architecture for failure detection," 2009, pp. 1-8. Article (CrossRef Link).

[44] A. Sulistio, U. Cibej, S. Venugopal, B. Robic, and R. Buyya, "A toolkit for modelling and

3117 Khajehvand et al.: SCTTS: Scalable Cost-Time Trade-off Scheduling for WorkflowApplication in Grids

simulating data Grids: an extension to GridSim," Concurrency and Computation: Practice and

Experience, vol. 20, pp. 1591-1609, 2008. Article (CrossRef Link).

Vahid Khajehvand received his B.S. and M.S. degrees in Software

Engineering from Qazvin Islamic Azad University (QIAU), in 1999 and

2002, respectively. Currently, he is pursuing his Ph.D. degree in Software

Engineering at the same school. His research interests include distributed

system, cloud computing, resource management, and workflow scheduling.

Hossein Pedram received his BS degree from Sharif University in 1977 and

an MS degree from Ohio State University in 1980, both in Electrical

Engineering. He received his PhD degree from Washington State University

in 1992 in Computer Engineering. He has served as a faculty member in the

Computer Engineering Department of Amirkabir University of Technology

since 1992. He teaches courses in Computer architecture and distributed

systems. His research interests include innovative methods in computer

architecture such as asynchronous circuits, management of computer

networks, distributed systems, and robotics.

Mostafa Zandieh accomplished his B.Sc. in Industrial Engineering at

Amirkabir University of Technology, Tehran, Iran (1994_1998), and M.Sc.

in Industrial Engineering at Sharif University of Technology, Tehran, Iran

(1998_2000). He obtained his Ph.D. in IndustrialE ngineering from

Amirkabir University of Technology, Tehran, Iran (2000_2006). Currently,

he is an Assistant Professor at Industrial Management Department, Shahid

Beheshti University, Tehran, Iran. His research interests are Production

Planning and Scheduling, Financial Engineering, Quality Engineering,

Applied Operations Research, Simulation, and Artificial Intelligence

techniques in the areas of manufacturing systems design.

