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Abstract 
 

To execute the performance driven Grid applications, an effective and scalable workflow 

scheduling is seen as an essential. To optimize cost & makespan, in this paper, we propose a 

Scalable Cost-Time Trade-off (SCTT) model for scheduling workflow tasks. We have 

developed a heuristic algorithm known as Scalable Cost-Time Trade-off Scheduling (SCTTS) 

with a lower runtime complexity based on the proposed SCTT model. We have compared the 

performance of our proposed approach with other heuristic and meta-heuristic based 

scheduling strategies using simulations. The results show that the proposed approach 

improves performance and scalability with different workflow sizes, task parallelism and 

heterogeneous resources. This method, therefore, outperforms other methods. 
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1. Introduction 

To build utility computing systems, they need to consists of a component model, a 

methodology, a set of tools and common services. A utility computing system is a system that 

automatically creates and manages multiple utility services on a shared infrastructure. The 

infrastructure consists of pools of the hardware resources, such as servers, storage and network 

tools, as well as software resources [1]. A utility Grid gives an economy model in which users 

pay service providers for their services due to factors such as the Quality of Service (QoS) 

provided. 

To conduct large-scale computations, the grid environment software and hardware 

resources are supported by the shared distributed infrastructures. To execute applications in 

sciences such as earthquake [2], astronomy [3], high energy physics [4] and etc., these 

infrastructures have proven to be highly efficient. Workflows constitute a common model for 

describing a wide range of applications in distributed environments. The workflow is 

represented in a “Direct Acyclic Graph” (DAG) with nodes and edges representing the tasks 

and data dependencies among the tasks, respectively.  

Once an application is transformed into the workflow structure, workflow management 

system will be ready to control and manage the execution of workflow on a distributed 

infrastructure. A taxonomy of Grid workflow management systems is found in [5]. Workflow 

scheduling problem is mapping each task on a suitable resource and ordering the tasks on each 

resource to satisfy performance criterion. Existing Grid scheduling methods try to minimize 

the execution time (makespan) or the execution cost of the workflows. Moreover, in utility 

Grids, there is much potential to study the combinations of QoS attributes.  

The current methods mostly are not designed for minimizing the cost and time. Considering 

these QoS attributes, the scheduler faces a time-cost tradeoff in selecting appropriate services, 

which belongs to the multi-objective optimization problem family. However, none of these 

papers considered the issue of scalability. 

There are three classes of approaches to the problem of multi-objective scheduling [6]. The 

first class of the approaches extends the definition of optimality to pareto optimality [7-10]. 

The second one is bi-criteria scheduling approaches, usually limited to optimizing two specific 

objectives [10-18]. The last one optimizes a linear combination of multiple scheduling 

objectives with a different weight value assigned to each one of them [9, 19, 20]. This last 

class assumes that the user is able to specify the requirements in such a model. This method is 

an easy way to express users’ requirements; this method also helps researchers with 

simplifying the problem at the same time it proposes an effective performance solution. Many 

researchers use this method to develop algorithms for multi-objective scheduling problem. 

Due to the complexities of this problem, however most of these methods use time consuming 

meta-heuristic approaches [8, 9, 21] e.g., Genetic Algorithms.  

To address this problem, there are few fast and efficient heuristic methods. The method in 

[20] is one of them. This method [20] relies on scheduling parallel application, whereas our 

method is based on scheduling workflow tasks. It is worth noting that in [20] the issue is 

proposed for future works. Workflows are loosely-coupled parallel applications that consist of 

a set of computational tasks linked via data dependencies, unlike tightly-coupled applications, 

such as parallel application, in which tasks communicate directly via the network. Workflow 

tasks typically communicate using the files.  Each task in a workflow produces one or more 

output files that become input files to other tasks. If tasks are run on different computational 

nodes, these files will be either stored in a shared file system, or transferred from one node to 
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the next one by the workflow management system [22, 23]. Therefore, the method presented 

in [20], is not able to schedule workflow tasks. 

Due to the different resource consumers and providers, the scheduling problem becomes 

highly complicated and NP-complete [24] in such an environment so that each party seeks its 

own profits. So the resource consumers and providers act independently at the same time 

pursuing conflicting aims. The resource consumers seek the minimum time and cost for 

scheduling application, whereas the main focus of resource providers is on the resource 

utilization gains. Thus, the main users’ challenge in this environment will be scheduling an 

application on the heterogeneous resources. In this case, the users have no explicit control on 

minimizing both the time and cost. It is also scalable due to an increase in the workflow size, 

task parallelism and the number of resources.     

This study-base is inspired by efforts to combine application management system and 

resources management system. To execute the workflow tasks, the resource slots required by 

the workflow tasks, can be virtually obtained by a resource provisioning system. In general, 

the cost of task execution can be computed according to the task allocation cost and task 

execution time. Cost and makespan optimization is of great importance due to the resources 

heterogeneity and scalability relative to an increase in the required number of processors, 

workflow size and the number of the resources. 

This paper introduces a Scalable Cost-Time Trade-off (SCTT) model to schedule workflow 

application tasks for cost-makespan optimization. The model allows users to identify the 

degree of the significance of each optimization objective using adjusting the trade-off factor. 

Trade-off involves losing a quality or an aspect of criteria in return for gaining another quality 

or aspect. It often implies that a decision has to be made with full comprehension of both the 

upside and downside of a particular choice; the term is also used in an evolutionary context, in 

which case the selection process acts as the "decision-maker". A decision in which you need to 

choose between two opposite objectives or cannot be satisfied at the same time. 

 Scalability is an important designing goal in a grid computing. A system can be scalable 

with respect to its size, i.e. we can increase the workflow size and resources. To schedule 

workflow tasks, based on the proposed SCTT model, we have developed a heuristic algorithm 

known as Scalable Cost-Time Trade-off Scheduling (SCTTS). To optimize cost and time 

(makespan) on heterogeneous resources, our proposed heuristic algorithm schedules parallel 

workflow tasks according to the trade-off factor based on scalability. The main contributions 

of the paper include: 

1) Development of a SCTT cost model for scheduling workflow application on 

heterogeneous resources with the capabilities of cost-makespan optimization. 

2) Development of a SCTTS heuristic algorithm according to SCTT-based model with 

following characteristics: (a) study the scalability of an increase in workflow size and 

its impact on the allocation cost, makespan and runtime i.e. performance metrics, for 

workflow scheduling. (b) study the scalability of an increase in workflow tasks 

parallelism and its impact on performance metrics. (c) study the scalability of an 

increase in the number of available resources and its impact on performance metrics.   

The rest of this paper is organized as follows: Section 2 discusses related works. In section 3 

the details of the proposed model and heuristic algorithm are described. Section 4 deals with a 

simulation setup. In section 5, the relevant experiments for evaluating the efficiency of the 

proposed algorithm are described with results analysis. Finally, section 6 ends with a 

conclusion and future works. 
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2. Related Work 

Workflow scheduling problem has been extensively studied and a number of scheduling 

algorithms have been proposed. There is a comprehensive introduction on the job scheduling 

strategies [25, 26]. In [27], the computational models are surveyed for grid scheduling 

problems and their resolution.  

Workflow scheduling algorithms are classified into two main groups: best effort and QoS 

constraint based scheduling [28]. The first group are further classified into four groups: list 

scheduling heuristics [5, 12, 29, 30], clustering heuristics [31, 32], task duplication heuristics 

[31, 32] and guided random search [31-35]. But in QoS-based, there are few works addressing 

workflow scheduling with QoS. They mainly consider the makespan or execution cost of the 

workflow as the major QoS attribute. As a result, they are suitable for community Grids, 

moreover, in utility Grids, there is much potential to study the combinations of QoS attributes. 

The current methods mostly are not designed with the aim of minimizing the cost and time. 

Also, the scalability relative to an increase in the workflow size, task parallelism and 

heterogeneous resources is scarcely considered.  

Therefore, there are few fast and efficient heuristic methods addressing this problem. One 

of them is the method in [20]. This method [20] relies on scheduling parallel applications, 

whereas our method is centered on scheduling workflow tasks and also includes scalability. 

Due to the data dependencies among tasks, scheduling workflow tasks becomes more complex 

than scheduling parallel application. 

There are a handful studies conducted on the cost optimization of workflow scheduling 

close to the current paper’s study. In [21] a genetic algorithm is proposed to find an optimized 

mapping of tasks on resources, minimizing both financial cost and makespan. This approach is 

developed in [8, 9] presenting cost-based model in which resource providers advertise 

available resource slots to users. A multi-objective genetic algorithm is presented capable of 

provisioning a subset of resource slots to minimize application makespan under minimum 

resource allocation cost. The main difference between these cost minimization algorithms and 

our proposed algorithm lies in the fact that their works do not pay attention to the 

heterogeneity of the resources. Thus, their entire resources possess identical CPU rating as 

well as cost processing whereas, our proposed method pays attention to heterogeneous clusters 

with different processing cost and CPU rating in real-world Utility Grid environments. Hence, 

our focus on resource heterogeneity makes the selection of appropriate resource become very 

complex.  

To allocate a task to a resource, in [36],  we presented a preliminary version of the proposed 

algorithm so that it selects a task with a minimum first fit cost-makespan objective function. 

Again, in [37], this algorithm is expanded to study the impact of the trade-off factor on  the 

degree of the significance of allocation cost to makespan. However, none of these two papers 

considered the issue of scalability. While, in the proposed approach, a cost based workflow 

scheduling model and a heuristic scheduling algorithm are added according to the proposed 

model. To optimize cost to makespan with respect to scalability, the proposed approach 

schedules parallel workflow tasks even with a lower runtime complexity. 

3. Proposed Model and Heuristic Algorithm 

In general, users need two QoS: service prices (cost) and execution time (makespan) of their 

application scheduling on pay-per-use services [7, 38]. Users, normally tend to run their 

applications in as the lowest makespan and cost as possible. The trade-off factor (α) represents 

the user’s preference between the allocation cost and the makespan. The trade-off factor is a 
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number between 0 to 1. If “trade-off factor=0”, the allocation cost will be insignificant, while 

the makespan will become significant. So the existing problem becomes time (makespan) 

optimization problem. If “trade-off factor=0.5”, both allocation cost and makespan will be of 

equal importance, in other words, the main issue will become the cost-time optimization. The 

scheduler needs to distribute the tasks on the resources to satisfy both criteria. If “trade-off 

factor=1” the makespan will be insignificant. As a result the problem becomes a cost 

optimization one, so due to the allocation cost, the scheduling algorithms need to seek 

economic resources.  

In this section, based on a model known as the SCTT model, the workflow scheduling 

problem will be discussed. Moreover, to optimize workflow cost-time, workflow scheduling 

problem will be solved. According to SCTT model, a scalable heuristic algorithm will be 

developed to solve workflow scheduling problem.  

3.1 The Proposed SCTT Model 

The proposed model consists of a set of heterogeneous users and resources. The users request 

the execution of an application. R is a set of resources in an environment. The resources are 

considered by a set of time slots where each time slot contains a start time, a finish time and a 

number of the available processors.  

A workflow application is represented in a DAG. A DAG is defined as G = (V,T), where V 

is a set of nodes so that each node represents a task and T is a set of links, each link 

representing the computation precedence order between two tasks. For example, a link 

( , )i j T  represents the precedence constraint of the task vi that needs to be completed before 

task vj starts. The data is a V*V matrix of communication data, where dij is the amount of data 

required to be transmitted from task vi to task vj. In a workflow, a task which does not have any 

parent task is known as an entry task, denoted as v0 and a task which does not have any child 

task is known as an exit task, denoted as vn+1. For simplicity, the application is assumed to 

have a single entry task and a single exit task. If there is more than one entry task or exit task in 

the workflow, they will be connected to a zero-time pseudo entry/exit task. 

If task t is executed on one of the available slots of the resource r, its Estimated Execution 

Time (EET) will be represented by EET(i,r). The Estimated Allocation Cost (EAC) of task i on 

the slots of resource r is obtained by the following equation: 
( , ) ( , ) , ,r iEAC i r EET i r C RNP i T r R                                                           (1) 

where Cr is an allocation cost of each slot time of the resource r for a single processor in time 

unit. Furthermore RNPi is the required number of processors of the task i. 

As the application is defined in DAG form, there needs to be a data dependency between 

application tasks. If two dependent tasks are to be executed on the slots of the same resource 

File Transfer Cost (FTC) will be negligible. Otherwise its FTC needs to be taken into account. 

Also, assuming that there is a parallel data transfer between different resources, maximum 

value of the FTC needs to be considered as a file transfer cost. So the total FTC(TFTC) for 

allocating task j on resource r is computed by: 

( )
( , ) max { ( , )}, , ,

i parentTasks j
TFTC j r FTC i j j T r R

 
                                                 (2) 

where parentTasks is a set of the predecessor tasks of a task. To solve workflow scheduling 

problem, we find a resource that minimizes TFTC. As we see in Eq.(2) if two tasks i, j with a 

data dependency are allocated on the slots of the same resources, its FTC will becomes 

negligible. 

To compute Earliest Start Time(EST) of each eligible task on each resource slot, the 

following recursive equation is used: 
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( )
( , ) max{ ( , ), max { ( , ) ( , ) ( , )}}, , ,

i parentTasks j
EST j r EAT j r EST i q EET i q TFTC j r j eligibleTasks r q R

 
        (3) 

where Estimated Available Time (EAT) is the available  slot of resource r for executing task j.  

The inner block of Eq.(3) is used for computing Earliest Finish Time(EFT) of immediate 

predecessor tasks of the desired task. If the desired task has more than one immediate 

predecessor task, the maximum EFT of immediate predecessor tasks will be considered as the 

EST of immediate successor task. Eq.(3) computes the EST of each task in recursive and 

bottom up approach so that it starts from computing the EST of the input task and finally ends 

with computing the EST of the output task. Therefore, the EST of the input task is initialized 

with simulation current time. 

To obtain the EST of each task based on Eq. (3), the EFT of execution of each task will be 

obtained: 
( , ) ( , ) ( , ), , .EFT j r EST j r EET j r j eligibleTasks r R                                        (4) 

The resource whose slots have the minimum allocation cost and execution finish time of an 

eligible task, is obtained by Eq. (5). The value of alpha (α) is a number between 0 and 1 which 

is considered as a constant trade-off factor. This trade-off factor shows the degree of the 

significance of allocation cost to execution finish time 
arg min{ ( , ) (1 ) ( , )}, ,j

r R
P NEAC j r NEFT j r j eligibleTasks 

 
                                   (5) 

where eligibleTasks is a set of tasks whose execution of parents’ tasks have been completed. 

NEAC and NEFT show normal values of EAC and EFT respectively obtained by the following 

equation: 
( , ) min{ ( , )}

( , ) , ,
max{ ( , )} min{ ( , }

q R

q Rq R

EAC j r EAC j q
NEAC j r j eligibleTasks r R

EAC j q EAC j q

 

  


  


                            (6) 

( , ) min{ ( , )}
( , ) , ,

max{ ( , )} min{ ( , }

q R

q Rq R

EFT j r EFT j q
NEFT j r j eligibleTasks r R

EFT j q EFT j q

 

  


  


                            (7) 

As the values range of both target parameters EAC and EFT differ from one another, values 

normalization is important. After obtaining the best resource for executing each eligible task, 

the task that minimizes cost metric of Eq. (8), is the task to be allocated to the best related 

resource. 
arg min { ( , ) (1 ) ( , )}.j j

j eligibleTasks
selectedTask NEAC j p NEFT j p 

 
                                 (8) 

When all of the application tasks are allocated to the resources slots according to the 

above-mentioned equations, the allocation cost and makespan of application will be computed 

according to the two following equations: 

( , ),
j T r R

allocationCost EAC j r
   

                                                      (9) 

( 1, ) (0, ).
r R r R

makespan EFT n r EST r
   

                                                (10) 

The objective function of the workflow scheduling problem is a multi-objective one that is 

obtained by minimizing the allocation cost and makespan. The objective function is stated as 

the following equation: 
min ( ) { (1 ) }f x allocationCost makespan                                            (11) 

To solve the workflow scheduling problem, a heuristic algorithm is developed in the 

section 3.2, based on the presented model in this section. 

3.2 The Proposed SCTTS Heuristic Algorithm 

To solve workflow scheduling problem, based on proposed SCTT model, the SCTTS heuristic 

algorithm is developed. The proposed model schedules application tasks to optimize cost and 
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time on heterogeneous resources in a scalable manner. Details of the algorithm are described 

in this section. 

As the application is in the form of DAG, therefore, it is necessary to consider task 

execution precedence during scheduling application tasks. Also, as the resources are selected 

from a heterogeneous distributed environment, to execute the tasks, there are many options for 

scheduling. Since in the scheduling process one seeks to optimize two objectives, cost and 

time, so to show the degree of importance of one objective to another one, a trade-off factor is 

necessary.  The suitable slots are, therefore, selected according to objective function in Eq. 

(11). 

The SCTTS pseudo-code is shown in algorithm 1, which is based on the proposed SCTT 

model. At first, the algorithm obtains the list of unscheduled tasks (line 1). Then, the 

unscheduled tasks are scheduled in the process of executing lines 2 to 19. For scheduling the 

tasks, a list of all eligible tasks to be executed is obtained (line 3). An eligible task is a task 

whose execution of all of its parent tasks are completed. The best resource needs to be 

obtained for executing each eligible task (lines 4 to 13). A list of all tasks which are parent 

tasks of eligible task j is obtained according to line 5. To execute eligible task j, slots of the 

available resource are examined (lines 6 to 11). In the process of line 7, the list of available 

slots of resource r is obtained. File transfer cost for executing task j on resource r is computed 

by Eq. (2) (line 8). According to Eqs. (3) and (4), EST and EFT of task j are computed on 

resource slots r respectively (line 9 and 10). Having computed EST and EFT of task j on all 

resources, we obtain the best resource according to Eq. (5) according to line 12. The algorithm 

selects the task that minimizes objective function of Eq. (8) as the best task according to Eqs. 

(5 to 7), (line 14). The best task is assigned to the best resource slots in order to be executed 

(line 15). Having assigned the best task to the best resource, the available slots characteristics 

need to be updated (lines 16 and 17). After scheduling the selected task, it needs to be deleted 

from the unscheduled tasks list (line 18). At the end of the scheduling process of all the tasks, 

the allocation task and makespan of the application are computed according to Eqs. (9) and 

(10), (lines 20 and 21). 

3.3 Time Complexity 

Supposing that k is the average number of the time slots available to the resource j in time t and 

n, m are the number of workflow tasks and the number of resources available to the system 

respectively, the main operations during executing the algorithm SCTTS is as follows:  

 In the worst case, the appropriate assignment of the time slots to workflow tasks is 

repeated as many as the number of tasks as in lines 2 to 19, i.e. O(n).   

 In each repetition of steps 4 to 13 eligible task are to be searched. As at any level of 

workflow graph there are on average n  nodes, so the order of its execution will 

become O( n ). 

 In each repetition of steps 6 to 11, in the worst case, available time slots of each 

resource will be obtained. Next, according to Eq.(3) and Eq.(4) EST and EFT are 

obtained respectively. At the end of these steps the best resource will be obtain for 

executing each task whose order of its execution will become O(mk). 

Therefore, the resultant worst case time complexity of the SCTTS algorithm will be 

O(n n mk). 
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Algorithm 1: The pseudo-code for the SCTTS heuristic algorithm 

Input: 

 

Output: 

An application characteristics 

The reade-off fcator (α) is a number between 0 to 1 

The resource characteristics and the available slots to each resource 

A workflow application scheduling 

1 unscheduledTasks = get the list of yet unscheduled tasks  

2  While (list of unscheduledTasks is not empty) do 

3   eligibleTasks = get the set of unscheduled ready tasks whose parent tasks have been 

scheduled 

4   for all j eligibleTasks do 

5    parentTasks = find the set of tasks that are the parents of task j 

6    for all Rer avail sources do 

7     get the slots list available to resource r 

8     get the required TFTC for executing task j on the slots of resource r 

according to Eq. (2)  

9     get the EST of task j on the slots of resource r according to Eq. (3)  

10     get the EFT of task j on the slots of resource r according to Eq. (4)  

11    end for 

12    get the best resource for executing task j according to Eq. (5)  

13   end for 

14   get the best eligible task for allocating according to Eq. (8)   

15   allocate the best eligible task to the best resource capable of executing it 

16   update the slots available to the allocated resource 

17   update EAT 

18   delete the selected task from the unscheduled tasks list    

19  end while 

20 get the total allocation cost of application according to Eq. (9) 

21 get the makespan of application according to Eq. (10) 

 

3.4 The SCTTS Heuristic Example 

Table 2 illustrates the SCTTS heuristic algorithm with a step-by-step explanation of the 

mapping of tasks in a sample workflow in Fig. 1(a). The sample workflow has five tasks 

denoted as v1, v2, v3, v4 and v5 with different execution time and data transfer requirements. As 

a workflow can have sub-workflows with multiple entries and exits, it is necessary to add two 

pseudo tasks i.e. a top task (v0) and a bottom task (v6), with zero execution time as Fig. 1(a) 

shows. While the top task spawns all actual entry tasks, the bottom task joins all actual exit 

tasks. Fig. 1(a) shows the output data of each task. The Table 1 shows the EET and EAC of 

each task. The tasks can be mapped to the slots of three Grid resources r1, r2 and r3 with 

different processing capability and transfer capacity. 
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(a) A sample workflow task graph 

with 7 tasks 

 (b) Task graph scheduling using 

SCTTS heuristic algorithm 

Fig. 1. An example workflow and associated task scheduling using SCTTS heurestic algorithm 

 

Table 1. The workflow task execution characteristics 

Workflow task 

Estimated Execution Time (EET) 

of task on the slots of a resource 

Estimated Allocation Cost (EAC) 

of task on the slots of a resource 

r1 r2 r3 r1 r2 r3 

v0 0 0 0 0 0 0 

V1 10 6.25 5 10 12.5 15 

v2 2 1.25 1 2 2.5 3 

v3 14 8.75 7 14 17.5 21 

v4 6 3.75 3 6 7.5 9 

v5 3.2 2 1.6 3.2 4 4.8 

v6 0 0 0 0 0 0 

 

First, the parents’ tasks of each eligible task is obtained as shown in Table 2. Using the 

proposed model, EAT, TFTC, EST and EFT of each eligible task is calculated, (Section 3.1). 

Using the obtained values, we obtain NEAC and NEFT i.e. Eqs. (6) and (7) which are normal 

values of EAC and EFT respectively. Having computed EST and EFT of task j on all resources, 

we obtain the best resource slot according to Eq. (5) for each step. The algorithm selects the 

task that minimizes objective function of Eq. (8) as the best task according to Eqs. (5 to 7). The 

best task is assigned to the best resource slot for being executed. Having assigned the best task 

to the best resource, the available slots characteristics need to be updated. After scheduling the 

selected task, it needs to be deleted from the unscheduled tasks list. This process will be 

repeated for all steps. In the end of the scheduling all the tasks, the allocation task and 

makespan of the workflow will be computed according to Eqs. (9) and (10). Table 2 illustrates 

the SCTTS heuristic algorithm with a step-by-step explanation of the mapping of each task on 

the resource slot. 
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Table 2. Step-by-step explanation of SCTTS heurestic algorithm 

S
tep

 

E
lig

ib
le task

s 

P
aren

t task
s EAT TFTC EST EFT NEAC NEFT 

S
elected

 reso
u

rce 

S
elected

 task
 

r
1
 

r
2
 

r
3
 

r
1
 

r
2
 

r
3
 

r
1
 

r
2
 

r
3
 

r
1
 

r
2
 

r
3
 

r
1
 

r
2
 

r
3
 

r
1
 

r
2
 

r
3
 

  

1 

v1 {v0} 0 0 0 0 0 0 0 0 0 10 

6.

3 5 0 0.5 1 1 0.3 0 

r2 v1 v2 {v0} 0 0 0 0 0 0 0 0 0 2 

1.

3 1 0 0.5 1 1 0.3 0 

2 

v2 {v0} 0 

6.

3 0 0 0 0 0 6.3 0 2 

7.

5 1 0 0.5 1 0.2 1 0 

r1 v2 v4 {v1} 0 

6.

3 0 10 0 10 

6.

3 6.3 6.3 22 10 19 0 0.5 1 1 0 0.8 

3 

v3 {v1,v2} 2 

6.

3 0 14 14 14 20 20 20 34 29 27 0 0.7 1 1 0.8 0 

r2 v4 v4 {v1} 2 

6.

3 0 10 0 10 16 6.3 16 22 10 19 0 0.5 1 1 0 0.8 

4 v3 {v1,v2} 2 10 0 14 14 14 16 24 20 30 33 27 0 0.7 1 0.5 1 0 r1 v3 

5 v5 {v2,v3} 30 30 30 0 15 15 30 45 45 33 47 47 0 0.5 1 0 1 1 r1 v5 

 

 As an illustration, Fig. 1(b) presents the scheduling of the workflow tasks obtained by the 

SCTTS heuristic algorithm for the sample workflow of Fig. 1(a). The execution makespan and 

allocation cost are 33.2 and 39.2 respectively. 

4. Environment Simulation Setup 

In this section, we study simulation environment characteristics. The Grids testbed platform 

environment which is modeled in this simulation, consists of ten sites of a subset of European 

Data Grid (EDG) spread across five countries which are interconnected via high-speed 

network links [20, 39]. The mean bandwidth value of the resources is 10 Gb/s with a mean 

latency time of 150 s. Table 3 shows the resources configuration on the grid testbed in order to 

simulate the distribution system including the cost of using a processor, CPU rating, number of 

CPUs and site-location of each resource. Each resource configuration is selected so that 

modeled environment reflects resource heterogeneity [20]. 

The workload simulated on these sites is based on the workload model generated by Lublin 

[40]. The main purpose of using this model is to create a more realistic simulation environment 

where the tasks compete with each other. Table 4 shows the workload parameters values 

applied to in the Lublin model.  
 

Table 3. Simulated EDG testbed resources 
Site name (Location)  Number of CPUs  Single CPU 

rating(MIPS) 

 Processing 

cost(G$) 
RAL(UK) 20 1140 0.0061 

Imperial College(UK) 26 1330 0.1799 

NorduGrid(Norway) 265 1176 0.0627 

NIKHEF(Netherlands) 54 1166 0.0353 

Lyon(France) 60 1320 0.1424 

Milano(Italy) 135 1000 0.0024 

Torina(Italy) 200 1330 1.856 

Catania(Italy) 252 1200 0.1267 

Padova(Italy) 65 1000 0.0032 

Bologna(Italy) 100 1140 0.0069 
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Table 4. Lublin workload model parameter values 
Workload parameter 

 

 Description  Value 

JobType  The type of job  Batch Jobs 

P  Maximum number of CPUs required by a job  1000 

uHi  It is the default log2 of the maximum number of CPUs required by a parallel job   Log2(p) 

uMed  It is the default log2 of the medium size of parallel jobs in the system. Note that 

uMed should be in [uHi-1.5, uHi-3.5] 

 uHi-1.5 

Other parameters  As presented by Lublin model  - 

 

To conduct experiments, parameterized graph generator is used for creating a synthetic 

workflow [32]. Table 5 shows the workflow application characteristics as in [9].  
 

Table 5. Workflow application characteristics 
Workflow characteristics 

 

 Value 

The number of tasks in the workflow application (n)  100 

The average runtime of each task  1000 sec 

The average number of processors per task  25 

The average depth of the workflow graph  n  

The average number of tasks per level  n  

The mean value of data transfer among the tasks  1000 Gb 

 

A benchmark application scheduling algorithm that uses the best-effort QoS for scheduling 

is simulated and tagged as the BE. In the BE, the exploited heuristic method selects a resource 

with the minimum number of tasks in the waiting and running queues [9]. 

A different benchmark application scheduling algorithm using cost model, is presented by 

Singh et al. [8, 9]. Their algorithm has provisioned a set of slots to optimize performance under 

minimum allocation cost in order to execute application on provisioned slots. This 

cost-modeled algorithm manages a trade-off between makespan and allocation cost based on 

the trade-off factor. Also scheduling is conducted using multi-objective genetic algorithm [41]. 

It is tagged as the MOGA for brevity [8, 9]. 

For our experiments, we use the GridSim [42-44] to simulate both benchmark algorithms, 

testbed platform environment and workload on an Intel Core 2 Duo CPU T9600, 2.80 GHz 

computer. 

We compare our proposed heuristic denoted as SCTTS with the MOGA and BE algorithms 

by conducting a number of experiments, in which we simulate a variety of real-world 

scenarios. The three performance metrics used to evaluate the scheduling approaches are the 

average makespan, allocation cost and runtime. In next section the obtained simulation results 

will thoroughly be analyzed.  

          

5. Results Analysis 

This section involves a comparison and analysis of the application performance results with 

objectives such as the makespan, allocation-cost and runtime of the proposed SCTTS 

algorithm along with the MOGA and the BE algorithms [8, 9]. Also, it will show how the 

proposed heuristic schedules the application on the distributed resources at the same time, 

optimizing the makespan and allocation cost in minimum runtime. According to the 

mentioned characteristics in section 4, a synthetic workflow application is produced with 

“trade-off factor=0.5” [8, 9]. The rest of the simulation parameters is compatible with the 

setup in section 4.  The Y-axis is drawn in logarithmic scale to make the results discernible 
.  
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5.1 The Trade-off Factor Impact 

This section examines an experiment conducted for studying the variability impact of the 

trade-off factor on the makespan and allocation-cost whose results will be analyzed. Fig. 2 

shows the variability impact of the trade-off factor on allocation-cost of three algorithms: the 

SCTTS, the MOGA and the BE on the heterogeneous resources. Obviously, in all instances 

except when the trade-off factor is zero, the allocation cost of the SCTTS algorithm becomes 

less than both the BE and MOGA algorithms. There seems to be an abnormality in “trade-off 

factor=0” however, it is not true as the workflow scheduler is seeking a resource with the 

lowest time, whereas the allocation-cost is insignificant. In other words, according to the cost 

metric of Eq. (8), the allocation-cost will have no effect. 

Fig. 3 shows the variability impact of the trade-off factor on the makespan during the 

workflow scheduling using three algorithms: the SCTTS, MOGA and BE on the heterogeneous 

resources. In all cases, except when the trade-off factor is equal to 1, the makespan of the 

SCTTS algorithm `is less than both the MOGA and BE algorithms. The abnormality which 

develops in “trade-off factor=1” is logical, because the workflow scheduler seeks resource 

slots with the minimum allocation cost for assigning a single task, whereas the execution time 

is insignificant, that is, according to the cost metric definition of Eq. (8), the makespan will 

have no effect. According to the cost metric function, both objectives are to be considered. 

Observing simultaneously Fig. 2 and Fig. 3 indicates the SCTTS algorithm can obtain the best 

solution in all cases. Therefore, the proposed approach can be used for solving the allocation 

cost optimization, makespan optimization and cost-makespan optimization. We included the 

confidence intervals in the simulation results in appendix 1 of the manuscript. Moreover, to 

reinforce the statistical level of the results, paired sample t-test are conducted and reported. It 

is worth mentioning that these statistical results are only provided for this section to 

statistically show the superiority of the proposed algorithm. 

 

 
Fig. 2. Variability impact of the trade-off factor on 

workflow allocation cost 

 
Fig. 3. Variability impact of the trade-off factor on 

workflow makespan 

5.2 Impact of The Workflow Size on The Performance  

A few experiments have been conducted to determine the impact of the workflow size on the 

allocation cost, makespan and runtime in terms of the number of the application tasks. It is 

followed by an analysis of the comparison between the SCTTS, MOGA and BE algorithms. In 

these experiments, the application characteristics are similar to those in section 4. The 

experiments were conducted with the application tasks’ sizes of 25, 50, 100, 200, 300 and 500 

in order to study its impact on the allocation cost, makespan and runtime in the application 

scheduling according to the increasing number of the application tasks. 

Fig. 4 and Fig. 5 show the impact of the workflow size on the allocation cost and makespan 
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in the application scheduling, respectively. As Fig. 4 and Fig. 5 indicate that the allocation 

cost and makespan of the proposed algorithm in all instances are around 82% and 31% less 

than the MOGA algorithm, respectively and also, one order of magnitude less than the BE 

algorithm. The low cost and makespan in the proposed algorithm is explained by the fact that it 

selects a slot with the minimum start-time for running the eligible task from the whole existing 

slots according to the cost metric of Eq. (8). However, the MOGA algorithm randomly selects 

a subset of the slots for scheduling the whole tasks. According to the existing data dependency 

among workflow tasks, if the execution of an eligible task is postponed, it will result in 

lengthening the makespan. In the BE algorithm, as long as the executions of the parent tasks 

are not completed, child-tasks will not be submitted. As the workflow graph depth is n , the 

higher the number of the tasks (n) are, the deeper the workflow will be. Eventually, an increase 

in the workflow graph depth causes an increase in the number of the times a task needs to wait, 

resulting in an increase in the makespan.    

 

 
Fig. 4. Workflow size impact on workflow 

allocation cost 

 
Fig. 5. Workflow size impact on workflow 

makespan 

Fig. 6 shows the SCTTS, MOGA and BE algorithms’ runtime relative to an increase in the 

number of the application tasks. As the figure shows, the proposed algorithm in all instances of 

an execution is almost three orders of magnitude less than the MOGA and the BE algorithms. 

The low time-complexity of the proposed algorithm is explained by the fact that it seeks the 

best slot for a single task just once, while the MOGA algorithm is implemented based on the 

genetic algorithm repetitively. One of the disadvantages of the genetic algorithms is length of 

their runtime. Moreover, in order to seek a subset of proper slots, the MOGA algorithm needs 

to repetitively plan the whole chromosomes of each generation of the population so that the 

best solution of each generation can be selected. The whole process involves a very high 

time-complexity. Therefore, the higher the number of the application tasks, the longer the 

runtime of the algorithm is. According to Fig. 6, if the number of the workflow tasks increases 

from 300 tasks to 500 tasks in the MOGA algorithm, its runtime will increase around one order 

of magnitude. The BE algorithm employs the best-effort service while disregarding the cost 

metric optimization. After the execution of all parent tasks of the corresponding task are 

completed, the execution of the desired task will cause the runtime to lengthen. 



3109                               Khajehvand et al.: SCTTS: Scalable Cost-Time Trade-off Scheduling for WorkflowApplication in Grids 

 
Fig. 6. Workflow size impact on application runtime 

 

According to Fig. 6, due to an increase in the application tasks even when it is running 500 

tasks, the SCTTS algorithm requires much lower runtime. The runtime required by the SCTTS 

algorithm is around 6.7 second for 500 tasks to be executed, whereas in the MOGA algorithm, 

the application runtime lasts almost one hour and twenty minutes. As a result, the SCTTS 

algorithm is scalable caused by an increase in the application tasks as well as capable of 

scheduling huge applications with the lowest runtime in a heterogeneous environment. 

5.3 Impact of The Task Size on Performance 

In this section, a few experiments were conducted for studying impact of a task size on the 

allocation cost, makespan and runtime of the scheduling algorithms. Next, the SCTTS, MOGA 

and BE algorithms are compared to one another. The task size is the number of the required 

processors all of which need to be available for execution. In these experiments, the 

application characteristics are the same as the ones in section 4 taking into account the average 

number of the required processors of each task: 1, 5, 10, 25, 50, 75 and 100, respectively. The 

higher the average number of the required processors for application tasks are, the higher the 

degree of the task parallelism is. These experiments are intended to study the impact of an 

increase in the application tasks parallelism on the allocation cost, makespan and runtime.   

Fig. 7 shows impact of a task size on the allocation cost of the application scheduling. As 

Fig. 7 indicates the allocation cost of the SCTTS algorithm decreases more than 60% 

compared to the MOGA algorithm due to an increase in the degree of the tasks parallelism in 

all instances. Also, the allocation cost of the SCTTS algorithm decreases in all instances almost 

one order of magnitude compared to the BE algorithm caused by an increase in the degree of 

the tasks parallelism. Fig. 8 shows impact of a task size on the makespan in the application 

scheduling. According to Fig. 8, the makespan of the SCTTS algorithm is better than the 

MOGA algorithm in terms of an increase in the degree of task parallelism in all instances. 

However, due to the fact that an increase in the degree of the task parallelism, the makespan of 

the SCTTS and MOGA algorithms decreases one order of magnitude in all instances compared 

to the BE algorithm. Thus, a concurrent observation of Fig. 7 and Fig. 8 in corresponding 

cases, demonstrates that the SCTTS algorithm has a better performance compared to both BE 

and MOGA algorithms.   
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Fig. 7. Task size impact on application allocation 

cost 

 
Fig. 8. Task size impact on application makespan 

Fig. 9 shows the impact of a task size on the runtime in the application scheduling. As Fig. 

9 shows the SCTTS algorithm runtime is at least three orders of magnitude less than the BE and 

MOGA algorithms in all instances. It is observed in Fig. 9, when the results of the BE and 

MOGA algorithm are compared, the abnormalities appear, that is, the runtime of the BE 

algorithm takes less time than the MOGA algorithm does as long as the average number of the 

required task processors remains less than 10. The abnormalities are due to the resource 

scheduling policy in the BE algorithm which is based on the best effort quality of service. 

Similarly, because of the low degree of the tasks parallelism, there are many ready slots for 

running each single task. Therefore, in such circumstances, the BE algorithm is more suitable 

than the MOGA algorithm in terms of the runtime. However, once the average number of the 

required tasks processors exceeds 10 processors, the runtime of the BE algorithm increases 

one order of magnitude compared to the MOGA algorithm. It is explained by the fact that the 

BE algorithm submits each single task to a resource with the least number of tasks in waiting 

and running queues. Also, the BE algorithm cannot schedule the tasks with a higher degree of 

the tasks parallelism in an earlier start-time. As a result, waiting time for the fulfillment of the 

parent task of each single task will become longer which results in a longer runtime. 

 

 
Fig. 9. Task size impact on workflow runtime 

 

The importance of the experiments is shown by the fact that the impact of the results of an 

increase in the degree of the tasks parallelism becomes clear. As the results of Fig. 7, Fig. 8 

and Fig. 9 show, the SCTTS algorithm may deliver a better performance for scheduling the 

applications with higher degrees of the task parallelism that optimizes the cost-makespan.                    

5.4 Impact of The Number of Resources 

A few experiments are also conducted for studying the impact of the number of the resource 

providers on the allocation cost, makespan and runtime of the algorithms. The performances 

of the SCTTS, MOGA and BE algorithms were compared. In these experiments the application 
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characteristics are as the same as the ones in section 4. The experiments are conducted on a 

number of different resource providers. According to Table 3, firstly, the experiments are 

conducted on the first three resources, secondly, on the first five resources, next, on the first 

seven resources after that, on the first nine resources and finally, on the entire ten resources. 

The impact associated with the different numbers of the resources on the allocation cost, 

makespan and runtime in the application scheduling are to be considered. 

Fig. 10 shows the impact of the different numbers of the resources on the allocation cost. 

The cost of the proposed algorithm is almost 40% lower than that of the MOGA algorithm as 

well as one order of magnitude of the BE algorithm in all cases, except in case, there are 3 and 

5 resources. As Fig. 10 indicates, with an increase in the number of resources, there is an 

increase in the allocation cost of the MOGA algorithm compared to the SCTTS algorithm. This 

increase in the cost is explained by the fact that an increase in the number of resources results 

in an increase in the number of slots, bearing it in mind that the MOGA algorithm is 

implemented by a genetic algorithm. The number of the slots constitutes the number of the 

solution chromosomes’ genes. As a result, with an increase in the number of the resources, 

there will be an increase in the number of the genes. Thus the algorithm is trapped in the local 

optimized solutions. 

Fig. 11 shows the impact of the number of the resources on the makespan. The makespan 

of the proposed algorithm is 14% lower than that of the MOGA algorithm as well as one order 

of magnitude compared to the BE algorithm. 

 

 
Fig. 10. Impact of the number of resources on 

workflow allocation cost 

 
Fig. 11. Impact of the number of resources on 

workflow makespan 

Having concurrently observed Fig. 10 and Fig. 11 in corresponding instances, it is 

understood that in all instances the SCTTS algorithm gives a better performance compared to 

both MOGA and BE algorithms. Hence, the CTTS algorithm is scalable relative to an increase 

in the number of the resources.  The allocation cost and makespan of the BE algorithm rises 

with a higher rate compared to both MOGA and CTTS algorithms according to an increase in 

the number of the resources. This rise is explained by the fact that the BE algorithm selects a 

resource for running the task with the lowest number of the waiting and running queues. As a 

result, the higher the number of the resources are, the more the available selections will be. 

Due to an increase in the number of the resource selections, it is likely that a resource selected 

for running a task, will be different to the resources which had run the parents’ tasks of the task. 

The explanation is that the BE algorithm almost ignores the data transfer minimization. As a 

result, the algorithm will be exposed to the data transfer cost from the resource which has 

executed the parent task to the resource which executes the child task. Eventually, there will be 

an increase in the allocation-cost and makespan. 

Fig. 12 shows the impact of the number of the resources on the runtime of the algorithms. 

In all cases, the runtime of the proposed algorithm is as many as four orders of magnitude 
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lower than both MOGA and BE algorithms.  The long runtime of the MOGA algorithm is 

explained by the fact that the MOGA algorithm is a genetic-based algorithm which generally 

suffers from the disadvantage of a longer runtime. The longer runtime of the BE algorithm 

explains that each task needs to wait for its parents’ tasks to be completed. According to Fig. 

12, although, the number of the resources increases, the runtime of the SCTTS algorithm 

remains constant. As a result, the SCTTS algorithm becomes scalable due to an increase in the 

heterogeneous resources of the grid environment. Therefore, the SCTTS algorithm can 

schedule the application in a more effective time.  

 

 
Fig. 12. Impact of the number of the resources on application runtime 

 

6. Conclusion and Future Works 

This paper presents both the scalable SCTT model and the scalable SCTTS heuristic algorithm 

for scheduling parallel workflow application tasks in Utility Grids while optimizing the 

allocation cost and makespan. The results of the present study show the SCTTS algorithm is 

scalable caused by an increase in the workflow size, task parallelism and heterogeneous 

resources. 

We also compared the SCTTS algorithm with the present best-effort and genetic-based 

algorithms. We evaluated the sensitivity of the SCTTS algorithm by the changes made in the 

degree of the significance of allocation cost and execution time. Also, the results show the 

proposed algorithm is scalable caused by an increase in the workflow size, task parallelism 

and heterogeneous resources with the lowest runtime. We conducted a few experiments on 

studying the impact of a workflow, task and resource sizes on the cost, makespan and runtime 

and we found that the proposed algorithm delivers a better performance for scheduling with 

higher degrees of the task parallelism. 

A future extension of the work will consider the effect of uncertainties in the task runtime 

estimates. In the current model, we have assumed that the workflow tasks runtimes are known 

accurately. However, the task runtimes might be stochastic. This adds another variable to the 

problem. Ideally, we intend to provision more resources, since if the slot expires before the 

task completes, we will lose all the work. As an another extention, we intend to consider 

makespan, cost reliability, avalability and their combinations as resource utilization. 

 

Appendix 1 

To compare our results statistically with other algorithms, we have used paired samples t-test 

through the SPSS software. Our statistical analysis are shown in Tables 6, 7 and 8. In these 

tables, *** denotes significant difference at 0.1% level, ** denotes significant difference at 

5% level and * denotes significant difference at 10% level. The results show that proposed 

algorithm outperforms other algorithms. It is worth mentioning that these statistical results are 



3113                               Khajehvand et al.: SCTTS: Scalable Cost-Time Trade-off Scheduling for WorkflowApplication in Grids 

only provided for section 5.1 to statistically show the superiority of the proposed algorithm. 

In Tables 6, 7 and 8 pair 1 is the difference between the cost of BE algorithm and the cost 

of SCTTS algorithm, pair 2 is the difference between the cost of MOGA algorithm and the cost 

of SCTTS algorithm, pair 3 is the difference between the makespan of BE algorithm and the 

makespan of SCTTS algorithm, pair 4 is the difference between the makespan of MOGA 

algorithm and the makespan of SCTTS algorithm, pair 5 is the difference between the runtime 

of BE algorithm and the runtime of SCTTS algorithm and pair 6 is the difference between the 

runtime of MOGA algorithm and the runtime of SCTTS algorithm.  

 
Table 6. Paired sample t test when trade-off factor is equal with 0.0 

Paired Samples Test 

 

Paired Differences 

T 

Sig. 

(2-tailed) Mean 

95% Confidence Interval of 

the Difference 

Lower Upper 

Pair 1 CostBE - CostSCTTS 2.16537E6 1.66850E6 2.66225E6 9.858 0.000*** 

Pair 2 CostMOGA - CostSCTTS -23015.29417 -4.20010E5 3.73980E5 -0.131 0.899 

Pair 3 MakespanBE - MakespanSCTTS 902.31767 836.80795 967.82739 31.158 0.000*** 

Pair 4 MakespanMOGA - MakespanSCTTS 29.09042 8.93158 49.24926 3.264 0.010** 

Pair 5 RuntimeBE - RuntimeSCTTS 5.20223E5 4.87467E5 5.52979E5 35.927 0.000*** 

Pair 6 RuntimeMOGA - RuntimeSCTTS 1.88239E5 1.13513E5 2.62964E5 5.699 0.000*** 

 

Table 7. Paired sample t test when trade-off factor is equal with 0.5 

Paired Samples Test 

 

Paired Differences 

T 

Sig. 

(2-tailed) Mean 

95% Confidence Interval of 

the Difference 

Lower Upper 

Pair 1 CostBE - CostSCTTS 2.97428E6 2.90603E6 3.04253E6 98.582 .000*** 

Pair 2 CostMOGA - CostSCTTS 1.13457E5 -8318.57441 2.35232E5 2.108 .064* 

Pair 3 MakespanBE - MakespanSCTTS 893.91033 835.29830 

6.88362 

952.52235 34.501 

3.071 

.000*** 

.013** 
Pair 4 MakespanMOGA - MakespanSCTTS 26.12825 45.37288 

Pair 5 RuntimeBE - RuntimeSCTTS 5.20195E5 4.87454E5 5.52937E5 35.941 .000*** 

Pair 6 RuntimeMOGA - RuntimeSCTTS 1.88210E5 1.13489E5 2.62932E5 5.698 .000*** 
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Table 8. Paired sample t test when trade-off factor is equal with 1.0 

Paired Samples Test 

 

Paired Differences 

T 

Sig. 

(2-tailed) Mean 

95% Confidence Interval of 

the Difference 

Lower Upper 

Pair 1 COSTBE - COSTSCTTS 3.09730E6 3.06734E6 3.12727E6 233.830 .000*** 

Pair 2 COSTMOGA - COSTSCTTS 1.50860E5 63882.40834 2.37838E5 3.924 .003** 

Pair 3 MakespanBE - MakespanSCTTS 793.92802 686.14602 901.71003 16.663 .000*** 

Pair 4 MakespanMOGA - MakespanSCTTS -64.22142 -142.39863 13.95580 -1.858 .096* 

Pair 5 RuntimeBE - RuntimeSCTTS 5.20251E5 4.87496E5 5.53006E5 35.930 .000*** 

Pair 6 RuntimeMOGA - RuntimeSCTTS 1.88266E5 1.13528E5 2.63005E5 5.698 .000*** 
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