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Abstract 
 

The problem of optimal channel sensing in heterogeneous cognitive networks is considered to 

maximize the system throughput performance. The characteristics of an optimal operating 

sensing point maximizing the overall system rate are investigated under several rate criteria 

including the sum rate, the minimum of the primary and secondary rates, and the secondary 

rate with a guaranteed primary rate. Under the sum rate criterion, it is shown that the loss by 

imperfect sensing is no greater than half of the sum rate achieved by the perfect time sharing 

approach in a two user case if the sensing point is optimally designed. 
 

 

Keywords: Cognitive radio/networks, cross-layer design and methodoloies, optimization, 

channel sensing, receiver operating characteristics 
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1. Introduction 

Heterogenous cognitive networks sharing the spectrum between two different wireless 

communication systems have gained much interest as a promising approach to mitigate the 

scarcity of available frequency bands [1]-[3]. The secondary subnet users with the low priority 

are allowed to access the same channel with the primary macro-network users with high 

priority in an opportunistic way. In a typical scenario, the opportunistic access of secondary 

subnet users initiates with channel sensing to find the opportunity of channel access. That is, 

subnet users sense the spectrum to determine its availability and access the channel depending 

on the sensing result. The performance of this initial channel sensing has an impact on the 

overall system throughput: the opportunity of a secondary subnet user to use the channel is lost 

in the case of a false alarm, whereas the primary macro-network user's transmission is collided 

when a secondary user miss-detects the primary transmission in the channel. Hence, system 

throughputs are important criteria for designing channel sensors in heterogeneous cognitive  

networks. 

There have been various channel sensors for heteroneous cognitive networks. Many of these 

works focus on detection performance without considering system throughputs. Energy 

detection, matched filtering, and cyclostationary feature detection methods were introduced as 

three main categories of spectrum sensing [4]-[6]. A compressed sensing technique was 

proposed for wideband sensing [7], and joint multiband detection and collaborative sensing 

among multiple secondary users were examined in [8]-[11]. The design of spectrum sensing 

from the perspective of system throughputs has been studied in [12]-[15]. The joint design of 

sensing and access policy maximizing the throughput of a secondary user under a given 

miss-detection probability or equivalently primary rate was investigated in [12], [13]. In [14], 

the trade-off between sensing duration and throughput was examined with constraint on 

miss-detection probability. On the other hand, the optimal number of secondary users 

maximizing the total deliverable throughput through both primary and secondary networks 

was investigated in [16]. As in [16], the sum rate of primary and secondary networks will be a 

good performance measure in cognitive radio networks. In the approach guaranteeing the 

primary rate, the strict constraint on the primary user's data rate can cause harmful effects in 

maximizing spectrum utilization. If a primary user relaxes the strict constraint on the 

guaranteed rate, we can achieve the higher sum rate. While a primary network sacrifices a 

small rate loss, a secondary network can get large gain. This operation can be regarded as 

cooperation between two networks sharing the same spectrum with different priorities.  

In this paper, we consider heteroneous cognitive networks in which a single primary 

macro-network user accesses its channel whenever it has a packet and a secondary subnet user 

accesses the same channel depending on the sensing outcome. In particular, characteristics of 

optimal channel sensing to maximize the overall system throughput (mainly focusing on the 

sum throughput) are investigated. The following characteristics of optimal sensing for the sum 

rate criterion are shown:  

1) The optimal false alarm probability of channel sensing at the secondary transmitter 

increases monotonically with the activity of the primary user if the receiver operating 

characteristics (ROC) curve of the detector for channel sensing is concave. 

2) A unique optimal operating point exists if the ROC curve is strictly concave. 
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3) The sum rate achieved at the optimal operating point is always less than or equal to that of 

the perfect time sharing between the primary and secondary users, but the loss in sum rate, 

which is caused by imperfect sensing, is no greater than half of the sum rate achieved by 

perfect time sharing. 

2. System Model 

We consider a heterogeneous cognitive network in which there are one primary 

transmitter-receiver pair and one secondary transmitter-receiver pair, as shown in Fig. 1. 

It is assumed that a transmission is slotted and synchronized with slot interval T. When a 

primary user periodically transmits packets including a pre-determined preamble, a 

secondary user can detect the starting point of the packet and sense the channel with the 

preamble of the primary packet. With this operation, the secondary user can synchronize 

with the primary network. At each slot the primary sender transmits a data packet to the 

primary receiver with probability  ∈[0, 1], which is called the primary macro-network 

activity factor. Each transmission link is assumed to be a flat fading additive white 

Gaussian noise (AWGN) channel. The received signal at the primary receiver is given by 
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where s[n] is the primary (complex) data symbols with unit average energy, hp is the 

complex channel coefficient for the primary link, and w[n]~CN(0, 2
), i.e., w[n] is 

zero-mean circularly symmetric complex Gaussian noise with variance 2
. If the 

secondary transmitter is the sender that transmits at time n, the received signal for the 

secondary receiver is given by 

 

[ [ [] ] ],s s ssy n h s n w n            (2) 

 

where ss[n] and ws[n]~CN(0, 2
) are the signal and noise for the secondary receiver, 

respectively, and hs is the complex channel coefficient for the secondary link. For channel 

sensing at the secondary transmitter, we maintain a link between the primary transmitter 

and secondary transmitter. The received signal at the secondary transmitter is given by 
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where hsen is the complex channel coefficient between the primary transmitter and the 

secondary transmitter and vsen[n]~ CN(0,  
2
). 

The secondary sender employs a detector to sense the primary transmission. ROC is 

given by {(, ())} where  and () are the false alarm probability and the detection 

probability, respectively, of the detector at the secondary sender. Channel sensing is 

performed during the initial Ts symbols for each slot (Fig. 2). If the channel is sensed to be 

idle, the secondary sender transmits a packet to its own receiver for the remaining T–Ts 

symbols. Otherwise, it waits for the next time slot to sense the channel again. (Here, we 

assume that the secondary subnet transmitters always have packets to transmit.) 
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The data rates under perfect sensing ( = 0 and () = 1) are given by [17] 
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for the primary macro-network user and the secondary subnet user, respectively. We 

consider the sum rate of all users (both primary and secondary users). When the sensing is 

perfect, the sum rate is given by 

 

(1 )sum p sR C C          (6) 

 

where  is the primary macro-network activity factor. In practice, the sum rate given by (6) 

is decreased due to imperfect sensing. False alarm prevents the secondary sender from 

transmitting its data and miss-detection causes collision between packets. When such 

collision occurs, we assume that no transmission is successful. Incorporating the false 

alarm probability  and the detection probability () into (6), the sum rates are rewritten 

as 

 

( ) (1 ) ) .(1sum p sR C C              (7) 

 

As a system model which we consider in this paper, the general cognitive radio with 

primary and secondary users can be assumed instead of a heterogeneous cognitive 

network. In general cognitive radio networks, however, the maximization of the 

secondary rate with a constraint on quality of service or rate of a primary link is 

considered. To justify the objective to maximize the sum rate, we employ the 

heterogeneous network. 

 

 
Fig. 1. Heterogeneous cognitive network model. 
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Fig. 2. System operation with sensing of secondary user. 

 

3. Optimal Channel Sensing 

In this paper, we consider three system rate criteria:  

Case (i) a sum rate with a given primary activity factor, 

Case (ii) the minimum of the primary and secondary rates,  

Case (iii) the maximum of the secondary rate with a guaranteed primary rate. 

While case (iii) is the most relevant to cognitive radio networks with a performance 

guarantee for the primary user, the other two criteria are also meaningful when we relax 

the strict performance guarantee for the primary user or when we consider the cooperation 

between the primary and secondary users to yield larger overall system throughput. In the 

latter case, the network can be viewed as being composed of multiple cooperating users 

with two priority classes. 

3.1 Case Study: Matched Filter Detector 

In most heterogeneous cognitive networks, a multi-stage sensing method, where a channel 

is roughly sensed with energy detection and then finely sensed with matched filtering, is 

used to improve sensing reliability. Because the performance of the multi-stage sensing 

method mainly depends on that of a matched filtering method, we analyze our results with a 

matched filtering scheme throughout this paper. A matched filter can be used if the initial Ts 

symbols of the primary signal are known. The ROC for a the matched filter case is given by  
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     (8) 

 1( ) 2SNR ,sQ Q T       (9) 

 

where Q( ) is the Gaussian tail probability and the secondary user sensing signal-to-noise 

ratio (SNR) is given by |hsen|
2
/

2
 [18], [19]. The detection probability is always a 

monotonically increasing and concave function of the false alarm probability. Fig. 3 shows 

the ROC of matched filtering with different sensing SNR values when Ts = 100.  

Even in fading channels, it can be shown that the concavity of the average ROC is 
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preserved. In Rayleigh fading channels, as an example, we can use the average ROC 

obtained with the exponential distribution of the sensing SNR, i.e., 
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where g  is the mean of the exponential distribution. For any  [0, 1], we have 
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Here, the inequality holds due to the concavity of the ROC. Therefore, the average ROC is 

also concave, i.e., the concavity of the ROC is preserved in fading channels. Therefore, 

the main results of this paper do not change even in fading channels. 
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Fig. 3. The ROC of the matched filter with different sensing SNR when Ts=100. 

 

The sum rate of heterogeneous cognitive networks as a function of  and  is given by 

 

( , ) ( ) (1 )(1 ) .sum p sR C C             (12) 

 

For a given detector and sensing SNR, as well as a given link quality, we have one degree of 
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freedom, i.e., choosing the false alarm rate  in our design. Hence, we can achieve the 

maximum sum rate by choosing an optimal operating point ( 
opt

,  ( 
opt

)) of the detector. 

When a matched filtering method is used for channel sensing, the optimal operating point 

can be obtained by solving the following equation: 

 

 1 1 '
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' ( ) 2SNR ( ) 1opt opt s
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C
 



   
   

 
    (13) 

 

where Q() and Q
-1
() denote the derivatives of Q() and Q

-1
(), respectively. It is hard to find 

the closed form optimal solution with (13). Since the ROC is concave for all types of detector, 

however, Rsum(, ) is the concave function of . Using this concavity of the sum rate, we can 

find the optimal operating point with a gradient algorithm which is the well-known method 

to solve the convex optimization problem. 

For example, Fig. 4 shows the maximum sum rate and the optimal operating point with 

respect to the primary activity factor when Cp = 3.46 bps/Hz (|hp|
2
/ 

2
 = 10) and Cs = 3.11 

bps/Hz (|hs|
2
/ 

2
 = 10, T = 1000, and Ts = 100) for a matched filter with   -20dB sensing SNR. 

When  = 0.7, the optimal operating point is ( 
opt 

= 0.487,  ( 
opt

) = 0.916) and the primary 

and secondary rates are given by 2.219 and 0.479, respectively. In this figure,  = 1 

corresponds to the extreme point in which the primary user always occupies the channel, and 

(,  ()) = (1,1) is the optimal operating point maximizing the primary macro-network 

user's data rate. When  = 0, on the other hand, the secondary transmitter can always use the 

channel and the (,  ()) = (0, 0) is the optimal point. As the primary activity factor 

increases, the sum rate is affected depends on the primary link rather than the secondary link. 

Therefore, the operating point should be selected to increase the detection probability instead 

of reducing the false alarm. Fig. 5 shows the maximum sum rate and the corresponding 

operating point with different primary capacities. As the primary capacity increases, it is 

important to reduce miss-detection events because the primary data rate in the sum rate 

becomes dominant. Thus, the optimal false alarm and corresponding detection probabilities 

should increase with the primary capacity. 
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Fig. 4. Rsum and opt

 with different  (Cp = 3.46 bps/Hz and Cs = 3.11 bps/Hz). 
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Fig. 5. Rsum and opt

 with different Cp ( = 0.7 and Cs = 3.11 bps/Hz). 
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The maximum rate achieved with the optimal false alarm probability is a convex function 

of the primary activity factor as shown in Fig. 4. Using the time sharing method (with perfect 

sensing) between two extreme points at  = 0 and  =1, on the other hand, we can achieve Rts 

( ) =  Cp + (1- )Cs as the sum rate. The convexity of R*( ) implies that the sum rate with 

imperfect sensing is always less than that of perfect time sharing. To quantify this loss, we 

define the rate loss factor due to imperfect sensing as 
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In the matched filtering case, the loss factor is written as 
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where  1( ) ( ) 2SNRopt opt
sQ Q T    . 

In the matched filtering case, the loss factor curves with respect to   for different sensing 

SNR values are shown in Fig. 6 when Cp = 3.46 bps/Hz and Cs = 3.11 bps/Hz. Additionally, 

the loss factor increases as the sensing SNR decreases. Fig. 7 shows the loss factor as a 

function of sensing SNR for the matched filter and energy detector for the worst value of   
with the same parameters. It is seen that the loss factor converges to 1/2 from below as the 

sensing SNR decreases. As expected, the maximum loss factor of energy detection 

converges to 1/2 faster than that of the matched filter. 

The necessary condition of the detector to show the results in this paper is the concavity 

of ROC. Though we use a matched filtering method to show the numerical results, the 

performance characteristics do not changed even with other types of detector. 
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Fig. 6. Rate loss factor by using a matched filter for channel sensing (Cp = 3.46 bps/Hz 

and Cs = 3.11 bps/Hz). 
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Fig. 7. Maximum rate loss factor of matched filtering and energy detection with a 

different sensing SNR (Cp = 3.46 bps/Hz and Cs = 3.11 bps/Hz). 

3.2 Optimal Sensing Characteristics 

The optimal operating point of the detector for the intermediate values of the primary activity 

factor is characterized in the following proposition. 

 

Proposition 1: For any value of   (0,1), there exists an optimal operating opt
( ) when 

the ROC curve of the sensor is concave, i.e.,  ( ) is a concave function of . Furthermore, 

opt
( ) is non-decreasing in this case as the primary activity factor   increases. In the case of 

strict concavity, opt
( ) increases monotonically, and the optimal value is unique. 

Proof: See Appendix. 

 

The above proposition follows our intuition. When the primary user accesses the channel 

more actively, the secondary transmitter should allow more false alarms to reduce the 

miss-detection probability. When the channel is not frequently occupied by the primary user, 

the secondary transmitter should be more aggressive by reducing the false alarm rate. The 

proposition provides a sufficient condition for such intuition to be valid: the ROC (,  ()) 

is concave. This property can be helpful to find the optimal operating point when the primary 

activity factor is periodically updated. If the primary activity factor increases, the new 

optimal operating point is higher than previous one. In this case, we can efficiently find the 

optimal solution by taking the search direction based on this property. 

For each  , we can optimize the sensing operating point and obtain the maximum sum rate 

given by 
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where opt
 is the solution to (13). The property of the optimal sum rate as a function of   is 

summarized in the following proposition. 
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Proposition 2: The optimal sum rate R*( ) (optimized over  for each  ) is a convex 

function of   for any type of ROC curve. 

Proof: See Appendix. 

 

The convexity is clearly seen in the upper region in Fig. 4. R*( ) is supported by all 

tangent straight lines determined by  , i.e., R*( ) is a curve connecting the maximum point 

at each  of all tangent lines associated with   [0, 1], as shown in the figure. Each tangent 

line is given by a linear function of , ()Cp+(1-)(1-)Cs, with a given . Also,  of each 

tangent line becomes optimal one opt
 at the point where the tangent line touches with the 

curve of R*( ). The convexity of R*( ) implies that the maximum R*( ) occurs either at  = 

0 or  = 1. That is, the maximum sum rate of the system is achieved when one user occupies 

the channel all the time under the collision model
1
. Using the time sharing method (with 

perfect sensing) between two extreme points at  = 0 and  = 1, we can achieve Rts ( ) = 

Cp+(1-)Cs as the sum rate. The convexity of R
*
( ) also implies that the sum rate with 

imperfect sensing is always less than that of perfect time sharing. To quantify this loss, we 

define the rate loss factor due to imperfect sensing as 
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One might expect this loss factor could be arbitrarily large, becoming 1 in the case of poor 

detection because of very low sensing SNR. However, this is not the case, and an upper 

bound for the loss factor exists and is given by the following proposition. 

 

Proposition 3: With optimal design of false alarm rate  alone, the rate loss factor is no 

greater than 1/2 regardless of the value of   and the sensing SNR, i.e., 

 

max ( ) / 2. 1L


      (18) 

Proof: See Appendix. 

 

Fig. 6 shows the loss factor curves with respect to   for different sensing SNR values 

when Cp = 3.46 bps/Hz and Cs = 3.11 bps/Hz.  When the sensing SNR becomes -,  () =  

and the optimal operating point is given by 
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When  Cp = (1- )Cs and the sensing SNR equals to -, the maximum rate loss factor equals 

to 1/2 regardless of the operating point. Additionally, the loss factor increases as the sensing 

SNR decreases. Fig. 7 shows the loss factor as a function of sensing SNR for the matched 

filter and energy detector for the worst value of   with the same parameters. It is seen, as 

predicted by Proposition 3, that the loss factor converges to 1/2 from below as the sensing 

                                                           
1
 This may not be valid under the interference model, where the transmit signal of one link is considered as interference of the other link, rather 

than the collision model. 
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SNR decreases. As expected, the maximum loss factor of energy detection converges to 1/2 

faster than that of the matched filter. 

When the sensing SNR is low, the sensing policy given by (19) guarantees the 

performance with small amount of loss. In Fig. 7, the additional loss due to employing the 

suboptimal operating point of (19) is lower than 10% when the matched filter is used for 

channel sensing and the sensing SNR is lower than -35dB. 

3.3 Cases (ii) and (iii): Optimization under unknown Primary Activity and 
Primary Rate Guarantee  

So far, we have assumed that the primary activity factor  is known to the system and have 

focused on the sum rate. However, this may not be the case in practice. Suppose that the 

primary activity factor   is unknown (i.e., the relative transmission activity between the 

primary and secondary users is unknown to the secondary transmitter) and the primary and 

secondary networks have equal priority. In such cases, the weighted sum rate may not be an 

appropriate criterion. One way to optimize the system rate in this case is to maximize the 

minimum rate of the two transmitter-receiver pairs, and the max-min criterion is given by 

 

 max min , ( .( ) 1 )max min p sR C C


       (20) 

The optimal choice of sensing operating point  in this case is given by the following 

proposition. 

 

Proposition 4: The optimal sensing operating point m
opt

 for the max-min criterion is given 

by the equalizer rule, i.e., 

 

( ) (1 ) .opt opt

m p m sC C        (21) 

 

Furthermore, this operating point corresponds to that of the primary activity factor , 

yielding the minimum R*( ). 
Proof: See Appendix. 

 

Note that the sum rate optimal sensing point opt
( ) at the secondary transmitter requires the 

knowledge of the primary activity factor at the secondary transmitter. The max-min optimal 

sensing point m
opt

 can be used without the knowledge of . In this way, we can maximize the 

worst data rate between the two networks. Also note in Fig. 4 that max-min point is the 

minimum point of R*( ). On the left side of this point, the secondary user has priority while 

the primary user has priority on the right side of the point. Thus, the max-min sensing 

operation point corresponds to the sensing operation that equalizes the priorities of the 

primary and secondary transmitters. The max-min operating point is easily obtained from the 

sensing ROC, as shown in Fig. 8, by rewriting (21) as (m
opt

 )=Cs/Cp(1-m
opt

 ). 
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Fig. 8. Max-min solution for different Cs/Cp. 

 

Now, consider the criterion maximizing the secondary rate while guaranteeing some target 

rate for the primary user. This approach is more relevant for cognitive radio networks where 

the priority of the primary user over secondary users is strict and the primary user does not 

cooperate with secondary users. Under the i.i.d. process model for the primary transmission, 

the problem is formulated as a constrained optimization: 

 

,

max(1 )

. . ( )

s

p p c

C

s t C R




 




     (22) 

 

where Rp,c is the minimum rate guaranteed for the primary user. In this case, the optimal 

sensing operating point qos
opt

 is simply given by 

 

,( )opt

qos p p cC R        (23) 

 

since the object function is a linear of  and () is a monotonically increasing function of . 

Therefore, qos
opt

 is on the boundary of the constraint. 

4. Conclusions 

We have considered the problem of optimal spectrum sensing in heterogeneous cognitive 

networks in which the primary network accesses the channel whenever it has a packet and 

the secondary network accesses the spectrum after sensing the spectrum. We have 

investigated the characteristics of the optimal operating sensing point that maximizes the 

system rate in such networks. We have shown that the loss by imperfect sensing is no greater 

than half of the sum rate of perfect time sharing. As a further work, we can consider the 

network with multiple primary and secondary users and investigate the characteristics of a 

sum rate and the optimal sensing under a given network condition. 
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Appendix 

Proof of Proposition 1 

The existence is straightforward from the continuity of Rsum as a function of  and the finite 

range of . Hence, we prove the uniqueness and monotonicity. When Rsum is not a monotonic 

function of ,  
opt

( ) maximizing Rsum is given by solving the following equation: 

 

( )
(1 ) 0.sum

p s

R
C C

 
 

 

 
   

 
    (A1) 

( ) 1
1 .

opt

s

p

C

C 

 

 

 
  

  
     (A2) 

 

Due to the concavity of the ROC curve, d()/d is a non-increasing function. The 

right-hand side of (A2) is also a monotonic decreasing function of . Therefore,  
opt

( ) is a 

non-decreasing function of . In the case of strict concavity, d()/d  is a monotone 

decreasing function of , and the claim follows. In trivial cases where the sum rate is a 

monotonic increasing or decreasing function of , the optimal false alarm is uniquely given 

by 1 or 0 regardless of , respectively.   

 

Proof of Proposition 2 

Let ' (1 ) ''      (0  1)  and (1 ) '''      , where 1   and similarly for 

' and '' . Then, we have 

 

 

*( ) ( ( )) (1 ( ))

( ' (1 ) '') ( ( )) ( ' (1 ) '')(1 ( ))

[ ' ( ( )) '(1 ( )) ]

(1 )[ '' ( ( )) ''(1 ( )) ]

( ') (1 ) *( '')*

opt opt

p s

opt opt

p s

opt opt

p s

opt opt

p s

R C C

C C

C C

C C

R R

     

  

  

  

       

          

       

       

   

  

      

  

  



  

    (A3) 

 

The last step is by the definition of R*( ). Here, conditions for the ROC curve are not 

required.  

 

Proof of Proposition 3 

The optimal false alarm in non-trivial cases is determined by the (A2). As a SNR increases, 

opt
 decreases and (opt

) increases due to (9). The R*(opt
, ) is a monotonically decreasing 

function of a sensing SNR. Therefore, the loss factor is maximized when SNR approaches 

- and limSNR - () = . When the sensing SNR approaches zero, we can rewrite the 

optimal sum rate as 

 

SNR SNR
lim *( ) lim max ( , )

max (1 )(1 ) .

sum

p s

R R

C C





  

  

 


   
                               (A4) 

 

Therefore, the optimal operating point is opt
 = 1 when  Cp  (1-)Cs. The maximum loss 
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factor is given by 

 

(1 ) 1
max .

(1 ) 2

s

p s

C

C C
L





 


 

 
    (A5) 

 

When  Cp < (1-)Cs, the optimal operating point is opt
 = 0 and the maximum loss factor is 

given by 

 

1
max .

(1 ) 2

p

p s

C
L

C C



 
 

 
    (A6) 

 
 

Proof  of  Proposition 4 

Consider Rsum (, ). For a fixed , it is a straight line as a function of . Hence, for a fixed , 

the minimum value of Rsum over 0    1 occurs at either  = 0 or  = 1 with the minimum 

value of min{() Cp, (1-)Cs}. Any straight line that is strictly below the R*( ) curve does 

not achieve the max-min criterion since there is a tangent line to R*( ) (and parallel to that 

line) that has a larger Rsum. The straight line tangent to R*( ) at 0 is given by Rsum (, 
opt

 (0)). 

Since R*( ) is convex due to Proposition 2 and min{() Cp, (1-)Cs} occurs at  = 0 or 1 

for straight line Rsum (, 
opt

 (0)), the max-min is achieved when Rsum(, opt
 (*)) touches 

R*( ) and is parallel to the  -axis, i.e., (m
opt

)Cp = (1-m
opt

 )Cs. (See Fig. 4.) * is the 

primary activity factor yielding the worst weighted sum rate optimized over .   
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