DOI QR코드

DOI QR Code

초고속 유성형 매체 분쇄기를 이용한 건식분쇄공정에서 Al/CNTs 복합재 제조를 위한 알루미늄분말의 분쇄거동

Grinding Behaviour of Aluminum Powder for Al/CNTs Nano Composites Fabrication by Dry Grinding Process Using a High Speed Planetary Ball Mill

  • 최희규 (창원대학교 메카트로닉스 융합부품소재 연구센터) ;
  • 이재현 (창원대학교 메카트로닉스 융합부품소재 연구센터) ;
  • 김성수 (하지이엔지) ;
  • 최경필 (창원대학교 금속신소재공학과) ;
  • 배대형 (창원대학교 금속신소재공학과) ;
  • 이승백 (창원대학교 금속신소재공학과) ;
  • 이웅 (창원대학교 금속신소재공학과)
  • Choi, Heekyu (Engineering Research Center(ERC) for Integrated Mechtronics Materials and Components in Changwon National University) ;
  • Lee, Jehyun (Engineering Research Center(ERC) for Integrated Mechtronics Materials and Components in Changwon National University) ;
  • Kim, Seongsoo (HAJI Eng.) ;
  • Choi, Gyungpil (Department of Metallurgy & Advanced Materials Engineering in Changwon National University) ;
  • Bae, Daehyung (Department of Metallurgy & Advanced Materials Engineering in Changwon National University) ;
  • Lee, Sungbak (Department of Metallurgy & Advanced Materials Engineering in Changwon National University) ;
  • Lee, Woong (Department of Metallurgy & Advanced Materials Engineering in Changwon National University)
  • 투고 : 2012.11.14
  • 심사 : 2012.12.11
  • 발행 : 2013.02.27

초록

The study of grinding behavior characteristics on aluminum powders and carbon nano tubes (CNTs) has recently gained scientific interest due to their useful effect in enhancing advanced nano materials and components, which significantly improves the property of new mechatronics integrated materials and components. We performed a series of dry grinding experiments using a planetary ball mill to systematically investigate the grinding behavior during Al/CNTs nano composite fabrication. This study focused on a comparative study of the various experimental conditions at several variations of rotation speeds, grinding time and with and without CNTs. The results were monitored for the particle size distribution, median diameter, crystal structure from XRD pattern and particle morphology at a given grinding time. It was observed that pure aluminum powders agglomerated with low rotation speed and completely enhanced powder agglomeration. However, Al/CNTs composites were achieved at maximum experiment conditions (350 rpm, 60 min.) of this study by a mechanical alloy process for Al/CNTs mixed powders because the grinding behavior of Al/CNTs composite powder was affected by addition of CNTs. Indeed, the powder morphology and crystal size of the composite powders changed more by an increase of grinding time and rotation speed.

키워드

참고문헌

  1. L. Wang, H. Choi, J. -M. Myoung and W. Lee, Carbon, 47, 3427 (2009). https://doi.org/10.1016/j.carbon.2009.08.007
  2. A. Esawi and K. Morsi, Compos. Appl. Sci. Manuf., 38, 646 (2007). https://doi.org/10.1016/j.compositesa.2006.04.006
  3. A. M. K. Esawi, K. Morsi, A. Sayed, M. Taher and S. Lanka, Compos. Sci. Tech., 70, 2237 (2010). https://doi.org/10.1016/j.compscitech.2010.05.004
  4. K. W. Lee, G. S. Kim, D. G. Kim and Y. D. Kim, J. Kor. Powd. Metal. Inst., 9, 329 (2002) (in Korean). https://doi.org/10.4150/KPMI.2002.9.5.329
  5. T. Laha, A. Agarwal, T. McKechnie and S. Seal, Mater. Sci. Eng. A, 381, 249 (2004). https://doi.org/10.1016/j.msea.2004.04.014
  6. K. T. Lau and D. Hui, Carbon, 40, 1605 (2002). https://doi.org/10.1016/S0008-6223(02)00157-4
  7. D. W. Lee, B. K. Kim, G. G. Lee and G. H. Ha, J. Kor. Powd. Metal. Inst., 3, 159 (1996) (in Korean).
  8. A. M. K. Esawi, K. Morsi, A. Sayed, M. Taher and S. Lanka, Compos. Appl. Sci. Manuf., 42, 234 (2011). https://doi.org/10.1016/j.compositesa.2010.11.008
  9. E. Y. Yoon, D. J. Lee, T. S. Kim and H. S. Kim, J. Kor. Powd. Metal. Inst., 19, 204 (2012) (in Korean). https://doi.org/10.4150/KPMI.2012.19.3.204
  10. W. K. Jang and K. S. Shin, J. Kor. Powd. Metal. Inst., 12, 208 (2005) (in Korean). https://doi.org/10.4150/KPMI.2005.12.3.208
  11. S. H. Joo and H. S. Kim, Trans. Mater. Process., 19(7), 423 (2010) (in Korean). https://doi.org/10.5228/KSTP.2010.19.7.423
  12. S. Wang, R. Liang, B. Wang and C. Zhang, Chem. Phys. Lett., 457, 371 (2008). https://doi.org/10.1016/j.cplett.2008.04.037
  13. J. H. Jang and K. S. Han, J. Compos. Mater., 41, 1431 (2007). https://doi.org/10.1177/0021998306068071
  14. T. Kuzumaki, K. Miyazawa, H. Ichinose and K. Ito, J. Mater. Res., 13, 2445 (1998). https://doi.org/10.1557/JMR.1998.0340
  15. J. H. Lee, I. Y. Kim, G. S. Lee, S. H. Baik, J. I. Youn, Y. J. Kim and Y. Z. Lee, J. KSTLE, 24, 269 (2008) (in Korean).
  16. L. Ci, Z. Ryu Z, N. Y. Jin-Phillipp and M. Ruhle, Acta Mater., 54, 5367 (2006). https://doi.org/10.1016/j.actamat.2006.06.031
  17. C. B. Mo, B. K. Lim, Y. J. Jeong and S. H. Hong, J. KSPE, 24(8), 7 (2007) (in Korean).
  18. W. Lee, S. Jang, M. J. Kim and J. M. Myoung, Nanotechnology, 19, 285701 (2008). https://doi.org/10.1088/0957-4484/19/28/285701
  19. M. Estili and A. Kawasaki, Scr. Mater., 58, 906 (2008). https://doi.org/10.1016/j.scriptamat.2008.01.016
  20. S. Nuriel, L. Liu, A. H. Barber and, H. D. Wagner, Chem. Phys. Lett., 404, 263 (2005). https://doi.org/10.1016/j.cplett.2005.01.072
  21. C. F. Deng, D. Z. Wang, X. X. Zhang and A. B. Li, Mater. Sci. Eng. A, 444, 138(2007). https://doi.org/10.1016/j.msea.2006.08.057
  22. S. -M. Zhou, X. -B. Zhang, Z. -P. Ding, C. -Y. Min, G. -L. Xu and W. -M. Zhu, Compos. Appl. Sci. Manuf., 38, 301 (2007). https://doi.org/10.1016/j.compositesa.2006.04.004
  23. C. L. Xu, B. Q. Wei, R. Z. Ma, J. Liang, X. K. Ma and D. H. Wu, Carbon, 37, 855 (1999). https://doi.org/10.1016/S0008-6223(98)00285-1
  24. H. Choi, S. Kim and J. Y. Hwang. J. Miner. Soc. Korean, 20, 135 (2007) (in Korean).
  25. H. Choi and L. Wang, Kor. J. Mater. Res., 17, 532 (2007) (in Korean). https://doi.org/10.3740/MRSK.2007.17.10.532
  26. H. Choi, W. Lee, S. Kim and H. Chung, Int. J. Appl. Ceram. Technol., 8, 1147 (2011) . https://doi.org/10.1111/j.1744-7402.2010.02548.x
  27. H. Masuda, K. Higashitani and H. Yoshida, Powder Technology Handbook, 3rd ed., p. 213, Taylor & Francis, London, UK (2006).
  28. J. S. Lee and H. S. Lee, J. Korean Ind. Eng. Chem., 18, 41 (2007) (in Korean).
  29. D. W. Fuerstenau, KONA, 13, 5 (1995). https://doi.org/10.14356/kona.1995006
  30. H. K. Choi, W. Lee, D. U. Kim, S. Kumar, J. H. Ha, S. S. Kim and J. G. Lee, Kor. J. Chem. Eng., 26, 300 (2009). https://doi.org/10.1007/s11814-009-0052-7
  31. H. Choi, W. Lee and S. Kim, Adv. Powder Tech., 20, 350 (2009). https://doi.org/10.1016/j.apt.2009.01.002

피인용 문헌

  1. Comparative Study for the Standardization of Grinding Equipment During Dry Grinding Process by Various Grinding Mills vol.25, pp.6, 2015, https://doi.org/10.3740/MRSK.2015.25.6.305
  2. Particle Morphology Change and Different Experimental Condition Analysis during Composites Fabrication Process by Conventional Ball Mill with Discrete Element Method(DEM) Simulation vol.26, pp.11, 2016, https://doi.org/10.3740/MRSK.2016.26.11.611
  3. The grinding behavior of ground copper powder for Cu/CNT nanocomposite fabrication by using the dry grinding process with a high-speed planetary ball mill vol.68, pp.1, 2016, https://doi.org/10.3938/jkps.68.147