DOI QR코드

DOI QR Code

The Potential 'O-GlcNAc-P'om'

'O-GlcNAc-P'om'의 존재 가능성

  • Moon, Il Soo (Department of Anatomy, College of Medicine, Dongguk University) ;
  • Lee, HyunSook (Neuroscience Section, Medical Institute of Dongguk University) ;
  • Lee, Hyung Jong (Department of Obsterics and Gynecology, Dongguk University College of Medicine)
  • 문일수 (동국대학교 의과대학 해부학교실) ;
  • 이현숙 (동국대학교 의학연구소) ;
  • 이형종 (동국대학교 산부인과학교실)
  • Received : 2012.02.19
  • Accepted : 2012.02.27
  • Published : 2013.02.28

Abstract

The addition and removal of N-acetylglucosamine (GlcNAc) molecules on serine or threonine residues of a protein is called O-GlcNAcylation. This post-translational modification occurs on both cytoplasmic and nuclear protein, and is fast and reversible as comparable to phosphorylation. In contrast to the phospho-signaling cycles, this emerging moon-lightening signaling is cycled by only two enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). The simple machinery is a good evolutionary adaptation of a cell for quick accommodation to continuously fluctuating intra- and extracellular microenvironments. Rather than "switching" on or off a specific proteins - this would be done by phosphorylation where numerous specific kinases and phosphatases are involved - O-GlcNAcylation would play a "rheostat" which would be much more delicately increase or decrease the efficacy of signal transductions in response to cellular nutrient and stress conditions. Interestingly, recent evidence indicates that O-GlcNAc is further modified by phosphorylation. The O-GlcNAc-P will upgrade the modulation efficiency of cellular processes to continuous 'analogue' level. So far, only one protein AP180 was reported to have O-GlcNAc-P on Thr310. But, proteomic data from our laboratory indicate that there are multiple O-GlcNAc-P proteins, constituting "O-GlcNAc-P'om". This will focus on the possibility of existence of "O-GlcNAc-P'om".

O-GlcNAc 화(O-GlcNAcylation)는 단백질의 serine이나 threonine에 N-acetylglucosamine (GlcNAc) 분자가 결합하는 것으로, 기존의 당단백질과 달리 세포질 및 핵단백질 모두에 일어난다. 또한 수정의 속도가 빠르고 가역적으로 일어남이 인산화 수식과 유사하다. 그러나 수많은 인산화효소와 탈인산화효소가 관여하는 것과 달리 O-GlcNAc 수식은 O-GlcNAc transferase (OGT)와 O-GlcNAcase (OGA) 단 두 개의 효소에 의하여 이루어진다. 이러한 단순한 조절기전은 세포가 내외환경에 즉시 적응할 수 있도록 진화한 것으로 해석된다. 즉, O-GlcNAc 수식은 특정한 단백질 하나 하나의 활성을 켜거나 끄는 것이 아니라, 세포의 신호전달과정의 효율을 전반적으로 조절하는 '가변저항기(rheostat)' 역할을 한다. O-GlcNAc 수식은 흔히 같은 아미노산 혹은 그 주변의 아미노산이 인산화되는 것을 수반하는데, 이는 인산화와 함께 서로 조화를 이루어 세포활성을 조절하는 것으로 해석된다. 최근 O-GlcNAc이 더 나아가 O-GlcNAc-P로 인산화될 가능성이 제시되고 있는 바, 본 총설에서는 이의 가능성을 이론적으로 설명하고, 실제 실험결과를 소개한다.

Keywords

References

  1. Allen, M. B. and Walker, D. G. 1980. Kinetic characterization of N-acetyl-D-glucosamine kinase from rat liver and kidney. Biochem 185, 577-582.
  2. Blume, A., Berger, M., Benie, A. J., Peters, T. and Hinderlich, S. 2008. Characterization of ligand binding to N-acetylglucosamine kinase studied by STD NMR. Biochem 47, 13138-13146. https://doi.org/10.1021/bi8016894
  3. Copeland, R. J., Bullen, J. W. and Hart, G. W. 2008. Cross-talk between GlcNAcylation and phosphorylation: roles in insulin resistance and glucose toxicity. Am J Physiol Endocrinol Metab 295, E17-E28. https://doi.org/10.1152/ajpendo.90281.2008
  4. Darley-Usmar, V. M., Ball, L. E. and Chatham, J. C. 2012. Protein O-linked ${\beta}$-N-acetylglucosamine: a novel effector of cardiomyocyte metabolism and function. J Mol Cell Cardiol 52, 538-549. https://doi.org/10.1016/j.yjmcc.2011.08.009
  5. Datta, A. 1970. Studies on hog spleen N-acetylglucosamine kinase. I. Purification and properties of N-acetylglucosamine kinase. Biochem Biophys Acta 220, 51-60. https://doi.org/10.1016/0005-2744(70)90228-7
  6. Dephoure, N., Zhou, C., Villen, J., Beausoleil, S. A., Bakalarski, C. E., Elledge, S. J. and Gygi, S. P. 2008. A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci USA 105, 10762-10767. https://doi.org/10.1073/pnas.0805139105
  7. Gindzienski, A., Glowacka, D. and Zwierz, K. 1974. Purification and properties of N-acetylglucosamine kinase from human gastric mucosa. Eur J Biochem 43, 155-160. https://doi.org/10.1111/j.1432-1033.1974.tb03395.x
  8. Graham, M. E., Thaysen-Andersen, M., Bache, N., Craft, G. E., Larsen, M. R, Packer, N, H. and Robinson, P. J. 2011. A novel post-translational modification in nerve terminals: O-linked N-acetylglucosamine phosphorylation. J Proteome Res 10, 2725-2733. https://doi.org/10.1021/pr1011153
  9. Hahne, H., Sobotzki, N., Nyberg, T., Helm, D., Borodkin, V. S., van Aalten, D. M., Agnew, B. and Kuster, B. 2013. Proteome Wide Purification and Identification of O-GlcNAc-Modified Proteins Using Click Chemistry and Mass Spectrometry. J Proteome Res 12, 927-936. https://doi.org/10.1021/pr300967y
  10. Hart, G. W., Slawson, C., Ramirez-Correa, G. and Lagerlof, O. 2011. Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu Rev Biochem 80, 825-858. https://doi.org/10.1146/annurev-biochem-060608-102511
  11. Hedou, J., Bastide, B., Page, A., Michalski, J. C. and Morelle, W. 2009. Mapping of O-linked beta-N-acetylglucosamine modification sites in key contractile proteins of rat skeletal muscle. Proteomics 9, 2139-2148. https://doi.org/10.1002/pmic.200800617
  12. Hinderlich, S., Berger, M., Schwarzkopf, M., Effertz, K. and Reutter, W. 2000. Molecular cloning and characterization of murine and human N-acetylglucosamine kinase. Eur J Biochem 267, 3301-3308. https://doi.org/10.1046/j.1432-1327.2000.01360.x
  13. Hinderlich, S., Nohring, S., Weise, C., Franke, P., Stasche, D. and Reutter, W. 1998. Purification and characterization of N-acetylglucosamine kinase from rat liver. Eur J Biochem 252, 133-139. https://doi.org/10.1046/j.1432-1327.1998.2520133.x
  14. Hu, P., Shimoji, S. and Hart, G. W. 2010. Site-specific interplay between O-GlcNAcylation and phosphorylation in cellular regulation. FEBS Lett 584, 2526-2538. https://doi.org/10.1016/j.febslet.2010.04.044
  15. Kreppel, L. K. and Hart, G. W. 1999. Regulation of a cytosolic and nuclear O-GlcNAc transferase. Role of the tetratricopeptide repeats. J Biol Chem 274, 32015-32022. https://doi.org/10.1074/jbc.274.45.32015
  16. Lazarus, M. B., Jiang, J., Gloster, T. M., Zandberg, W. F., Whitworth, G. E., Vocadlo, D. J. and Walker, S. 2012. Structural snapshots of the reaction coordinate for O-GlcNAc transferase. Nat Chem Biol 8, 966-968. https://doi.org/10.1038/nchembio.1109
  17. Lazarus, M. B., Nam, Y., Jiang, J., Sliz, P. and Walker, S. 2011. Structure of human O-GlcNAc transferase and its complex with a peptide substrate. Nature 469, 564-567. https://doi.org/10.1038/nature09638
  18. Marshall, S., Nadeau, O. and Yamasaki, K. 2004. Dynamic actions of glucose and glucosamine on hexosamine biosynthesis in isolated adipocytes: differential effects on glucosamine 6-phosphate, UDP-N-acetylglucosamine, and ATP levels. J Biol Chem 279, 35313-35319. https://doi.org/10.1074/jbc.M404133200
  19. Moon, I. S. and Lee, H. 2013. Identification of potential substrates of N-acteylglucosamine kinase by proteomic approach. J Life Sci In press.
  20. Nair, U. B., Joel, P. B., Wan, Q., Lowey, S., Rould, M. A. and Trybus, K. M. 2008. Crystal structures of monomeric actin bound to cytochalasin D. J Mol Biol 384, 848-864. https://doi.org/10.1016/j.jmb.2008.09.082
  21. Nettelblad, F. A. and Engström, L. 1987. The kinetic effects of in vitro phosphorylation of rabbit muscle enolase by protein kinase C. A possible new kind of enzyme regulation. FEBS Lett 214, 249-252. https://doi.org/10.1016/0014-5793(87)80064-9
  22. Ngoh, G. A., Facundo, H. T., Zafir, A. and Jones, S. P. 2010. O-GlcNAc signaling in the cardiovascular system. Circ Res 107, 171-185. https://doi.org/10.1161/CIRCRESAHA.110.224675
  23. Overath, T., Kuckelkorn, U., Henklein, P., Strehl, B., Bonar, D., Kloss, A., Siele, D., Kloetzel, P. M. and Janek, K. 2012. Mapping of O-GlcNAc sites of 20S proteasome subunits and Hsp90 by a novel biotin-cystamine tag. Mol Cell Proteomics 11, 467-477. https://doi.org/10.1074/mcp.M111.015966
  24. Schimpl, M., Borodkin, V. S., Gray, L. J. and van Aalten, D. M. 2012. Synergy of peptide and sugar in O-GlcNAcase substrate recognition. Chem Biol 19, 173-178. https://doi.org/10.1016/j.chembiol.2012.01.011
  25. Schimpl, M., Schüttelkopf, A. W., Borodkin, V. S. and van Aalten, D. M. 2010. Human OGA binds substrates in a conserved peptide recognition groove. Biochem J 432, 1-7. https://doi.org/10.1042/BJ20101338
  26. Torres, C. R. and Hart, G. W. 1984. Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc. J Biol Chem 259, 3308-3317.
  27. Wang, Z., Gucek, M. and Hart, G. W. 2008. Cross-talk between GlcNAcylation and phosphorylation: site-specific phosphorylation dynamics in response to globally elevated O-GlcNAc. Proc Natl Acad Sci USA 105, 13793-13798. https://doi.org/10.1073/pnas.0806216105
  28. Weihofen, W. A., Berger, M., Chen, H., Saenger, W. and Hinderlich, S. 2006. Structures of human NAcetylglucosamine kinase in two complexes with N-Acetylglucosamine and with ADP/glucose: insights into substrate specificity and regulation. J Mol Biol 364, 388-399. https://doi.org/10.1016/j.jmb.2006.08.085
  29. Yang, W. H., Kim, J. E., Nam, H. W., Ju, J. W., Kim, H. S., Kim, Y. S. and Cho, J. W. 2006. Modification of p53 with O-linked N-acetylglucosamine regulates p53 activity and stability. Nat Cell Biol 8, 1074-1083. https://doi.org/10.1038/ncb1470
  30. Zachara, N. E., O'Donnell, N., Cheung, W. D., Mercer, J. J., Marth, J. D. and Hart, G. W. 2004. Dynamic O-GlcNAc modification of nucleocytoplasmic proteins in response to stress. A survival response of mammalian cells. J Biol Chem 279, 30133-30142. https://doi.org/10.1074/jbc.M403773200

Cited by

  1. The Non-Canonical Effect of N-Acetyl-D-Glucosamine Kinase on the Formation of Neuronal Dendrites vol.37, pp.3, 2014, https://doi.org/10.14348/molcells.2014.2354