References
- R. Agrawal and R. Srikant, "Fast Algorithms of Mining Association Rules", International conference on Very Large Data Bases(VLDB), vol. 20, pp.487-499, 1994.
- T. Calders, C. Garboni, B. Goethals, Approximation of Frequentness Probability of Itemsets in Uncertain Data. International Conference on Data Mining (ICDM), pp. 749-754, 2010.
- C. Chen, X. Yan, F. Zhu and J. Han, gApprox: Mining Frequent Approximate Patterns from a Massive Network. ICDM, pp.445-450, 2007.
- J. Han, J. Pei, Y. Yin and R. Mao, "Mining frequent patterns without candidate generation : a frequent pattern tree approach", Data Mining and Knowledge Discovery, vol 8, pp.53-87. 2004. https://doi.org/10.1023/B:DAMI.0000005258.31418.83
- J. Han, H. Cheng, D. Xin and X.Yan, Frequent pattern mining : current status and future directions, Data Mining and Knowledge Discovery(DMKD), vol.15, no.1, pp. 55-86, Aug 2007. https://doi.org/10.1007/s10618-006-0059-1
- C.W. Li, K.F. Jea, An adaptive approximation method to discover frequent itemsets over slidingwindow- based data streams, Expert System with Applications(ESWA) 38(10), pp.13386-13404, 2011. https://doi.org/10.1016/j.eswa.2011.04.167
- M. Ren, L. Guo, Mining Recent Approximate Frequent Items in Wireless Sensor Networks, Fuzzy Systems and Knowledge Discovery, pp. 463-467, 2009.
- P. Wong, T. Chan, M. H. Wong and K. Leung, Predicting Approximate Protein-DNA Binding Cores Using Association Rule Mining, ICDE pp.965-976, 2012.
- R.C. Wong and A.W. Fu, "Mining top-K frequent itemsets from data streams", Data Mining Knowledge Discovery. Vol.13, pp.193-217, 2006. https://doi.org/10.1007/s10618-006-0042-x
- J.X. Yu, Z. Chong, H. Lu and A. Zhou, False Positive or False Negative: Mining Frequent Itemsets from High Speed Transactional Data Streams, International conference on Very Large Data Bases(VLDB) vol. 30, pp.204-215, Aug. 2004.
- U. Yun and K. Ryu, Approximate Weight frequent pattern mining with/without noisy environments, Knowledge-Based System, vol. 24, no. 1, pp. 73-82, Feb 2011. https://doi.org/10.1016/j.knosys.2010.07.007
- Y. Zhao, C. Zhang and S. Zhang, Efficient Frequent Itemsets Mining by Sampling, Advances in Intelligent IT: Active Media Technology, pp.112- 117, 2006.
- F. Zhu, X. Yan, J. Han and P.S. Yu, Efficient Discovery of frequent Approximate Sequential Patterns, International Conference on DataMining (ICDM), pp.751-756, Dec 2007.
- Frequent itemset Mining dataset repository. Availble at (http://fimi.cs.helsinki.fi/data/)
Cited by
- Analysis and Performance Evaluation of Pattern Condensing Techniques used in Representative Pattern Mining vol.16, pp.2, 2015, https://doi.org/10.7472/jksii.2015.16.2.77
- Performance Analysis of Frequent Pattern Mining with Multiple Minimum Supports vol.14, pp.6, 2013, https://doi.org/10.7472/jksii.2013.14.6.01
- 슬라이딩 윈도우 기반의 스트림 하이 유틸리티 패턴 마이닝 기법 성능분석 vol.17, pp.6, 2013, https://doi.org/10.7472/jksii.2016.17.6.53