DOI QR코드

DOI QR Code

Biased Zero-Error Probability for Adaptive Systems under Non-Gaussian Noise

비-가우시안 잡음하의 적응 시스템을 위한 바이어스된 영-오차확률

  • Kim, Namyong (School of Electronic, Information & Communications Eng., Kangwon National Univ.)
  • Received : 2012.10.09
  • Accepted : 2013.01.10
  • Published : 2013.02.28

Abstract

The criterion of zero-error probability provides a limitation on error probability functions being used for adaptive systems when the error samples are shifted by the influence of DC-bias noise. In this paper, we employ a bias term in the error distribution and propose a new criterion of the biased zero-error probability with error being zero. Also, by maximizing the proposed criterion on expanded filter structures, a supervised adaptive algorithm has been derived. From the simulation results of supervised equalization, the algorithm based on the proposed criterion yielded zero-centered and highly concentrated error samples without disturbance in the environments of strong impulsive and DC-bias noise.

영-오차확률 성능 기준은 오차 샘플들이 직류 바이어스 잡음의 영향을 받을 때 적응 시스템에 사용되기에는 제약이 따른다. 이 논문에서는 바이어스 변수를 오차 분포에 도입하고 바이어스된 오차확률에서 오차를 0 으로 하여 새로운 성능 기준인 바이어스된 영-오차확률을 제안하였다. 또한, 확장 필터 구조를 기반으로 제안된 성능 기준을 최대화 함으로써 적응 알고리듬을 도출하였다. 통신 채널 등화에 대한 시뮬레이션 결과로부터 제안된 성능기준에 기반한 이 알고리듬이 강한 충격성 잡음과 직류-바이어스 잡음의 환경에서 동요 없이 오차 샘플들을 0 으로 집중시키는 성능을 보였다.

Keywords

References

  1. J. Proakis, Digital Communications, McGraw-Hill, 2nded, 1989.
  2. Z. Daifeng, Q. Tianshuang, "Underwater sources location in non-Gaussian impulsive noise environments", Digital Signal Processing, vol. 16, March, 2006, pp. 149-163. https://doi.org/10.1016/j.dsp.2005.04.008
  3. K. Blackard, T. Rappaport, and C. Bostian, "Measurements and models of radio frequency impulsive noise for indoor wireless communications," IEEE J. Select. Areas Commun., vol. 11, Sept. 1993, pp. 991-1001. https://doi.org/10.1109/49.233212
  4. Y. Yabuuchi, D. Umehara, M. Morikura, T. Hisada, S. Ishiko, and S. Horihata, "Measurement and analysis of impulsive noise on in-vehicle power lines", Proceedings of ISPLC'10, March 2010. pp. 325-330.
  5. J. Armstrong, J. Shentu, C. Chai, and H. Suraweera, "Analysis of impulse noise mitigation techniques for digital television systems", Proceedings of InOWo '03, 2003, pp. 172-176.
  6. N. Kim and L. Yang, "Decision Feedback Equalizer Algorithms based on Error Entropy Criterion," Journal of Korean Society for Internet Information, vol. 12, No. 4, Aug., 2011, pp. 27-33.
  7. N. Kim, "Decision feedback equalizer based on maximization of zero-error probability," Journal of KICS, vol. 36, no. 8, Aug. 2011, pp. 516-521. https://doi.org/10.7840/KICS.2011.36C.8.516
  8. E. Parzen, "On the estimation of a probability density function and the mode," Ann. Math. Stat. vol. 33, 1962, p. 1065. https://doi.org/10.1214/aoms/1177704472
  9. Larry Wasserman, All of statistics: a concise course in statistical inference, Springer, 2004.
  10. S. Kim, S. Kim, C. Youn, and Y. Lim, "Performance analysis of receiver for underwater acoustic communications using acquisition data in shallow water", Journal of Acoustical Society of Korea, vol. 29, no. 5, May 2010, pp. 303-313.