참고문헌
-
Balakrishnan, P., Lee, B. J., Oh, D. H., Kim, J. O., Lee, Y. I., Kim, D. D., Jee, J. P., Lee, Y. B., Woo, J. S., Yong, C. S., and Choi, H.G. (2009) Enhanced oral bioavailability of Coenzyme
$Q_{10}$ by self-emulsifying drug delivery systems. Int. J. Pharm. 374, 66-72. https://doi.org/10.1016/j.ijpharm.2009.03.008 -
Barbut, S. and Foegeding, E. A. (1993)
$Ca^{2+}$ -induced gelation of pre-heated whey protein isolate. Food Sci. 58, 867-871. https://doi.org/10.1111/j.1365-2621.1993.tb09379.x - Beaulieu, L., Savoie, L., Paquin, P., and Subirade, M. (2002) Elaboration and characterization of whey protein beads by an emulsification/cold gelation process: Application for the protection of retinol. Biomacromolecule. 3, 239-248. https://doi.org/10.1021/bm010082z
- Bouchemal, K., Briancon, S., Perrier, E., and Fessi, H. (2004) Nano-emulsion formulation using spontaneous emulsification: solvent, oil and surfactant optimization. Int. J. Pharm. 280, 241-251. https://doi.org/10.1016/j.ijpharm.2004.05.016
- Chen, L., Remondetto, G. E., and Subirade, M. (2006) Food protein-based materials as nutraceutical delivery systems. Trends Food Sci. Technol. 17, 272-283. https://doi.org/10.1016/j.tifs.2005.12.011
- Chen, L. and Subirade, M. (2006) Alginate-whey protein granular microspheres as oral delivery vehicles for bioactive compounds. Biomaterials 27, 4646-4654. https://doi.org/10.1016/j.biomaterials.2006.04.037
-
Crane, F. L. (2001) Biochemical functions of coenzyme
$Q_{10}$ . J. Am. Coll. Nutr. 20, 591-598. https://doi.org/10.1080/07315724.2001.10719063 - Damodaran, S. (1996) Amino acids, peptides and proteins. In: Food chemistry. Fennema, O. R. (3rd ed) Marcel Dekker, Inc., NY, pp. 321-429.
-
Dannenberg, F. and Kessler, H. G. (1988) Effect of denaturation of
$\beta$ -lactoglobulin on texture properties of set-style nonfat yoghurt. 1. Syneresis. Milchwissenschaft 43, 632-635. - Dragicevic-Curic, N., Grafe, S., Gitter, B., Winter, S., and Fahr, A. (2010) Surface charged temoporfin-loaded flexible vesicles: In vitro skin penetration studies and stability. Int. J. Pharm. 384, 100-108. https://doi.org/10.1016/j.ijpharm.2009.10.006
- Euston, S. R., Finnigan, S. R., and Hirst, R. L. (2000) Aggregation kinetics of heated whey protein-stabilized emulsions. Food Hydrocolloid. 14, 155-161. https://doi.org/10.1016/S0268-005X(99)00061-2
- George, M. and Abraham, T. E. (2006) Polyionic hydrocolloids for the intestinal delivery of protein drugs: Alginate and chitosan - a review. J. Control. Release 114, 1-14. https://doi.org/10.1016/j.jconrel.2006.04.017
-
Harnsilawat, T., Pongsawatmanit, R., and McClements, D. J. (2006) Characterization of
$\beta$ -lactoglobulin-sodium alginate interactions in aqueous solutions: A calorimetry, light scattering, electrophoretic mobility and solubility study. Food Hydrocolloid. 20, 577-585. https://doi.org/10.1016/j.foodhyd.2005.05.005 -
Hongsprabhas, P. and Barbut, S. (1997) Protein and salt effects on
$Ca^{2+}$ -induced cold gelation of whey protein isolate. J. Food Sci. 62, 382-385. https://doi.org/10.1111/j.1365-2621.1997.tb04006.x - Ishihara, T. and Mizushima, T. (2010) Techniques for efficient entrapment of pharmaceuticals in biodegradable solid micro/nanoparticles. Expert Opin. Drug Del. 7, 565-575. https://doi.org/10.1517/17425241003713486
- Izquierdo, P., Esquena, J., Tadros, T. F., Dederen, C., Garcia, M. J. N., Azemar, and Solans, C. (2002) Formation and stability of nano emulsions prepared using the phase inversion temperature method. Langmuir 18, 26-30. https://doi.org/10.1021/la010808c
- Keowmaneechai, E. and McClements, D. J. (2006) Influence of EDTA and citrate on thermal stability of whey protein stabilized oil-in-water emulsions containing calcium chloride. Food Res. Int. 39, 230-239. https://doi.org/10.1016/j.foodres.2005.07.010
-
Kwon, S. S., Nam, Y. S., Lee, J. S., Ku, B. S., Han, S. H., Lee, J. Y., and Chang, I. S. (2002) Preparation and characterization of coenzyme
$Q_{10}$ -loaded PMMA nanoparticles by a new emulsification process based on microfluidization. Coll. Surf. A: physicochem. eng. Aspects. 210, 95-104. https://doi.org/10.1016/S0927-7757(02)00212-1 - Lee, M. R., Nam, G. W., Choi, H. N., Yun, H. S., Kin, S. H., You, S. K., Park, D. J., and Lee W. J. (2008) Structure and chemical properties of beta-lactoglobulin nanoparticles. J. Agric. Life Sci. 42, 31-36.
-
Liang, L., Tajmir-Riahi, H. A., and Subirade, M. (2008) Interaction of
$\beta$ -lactoglobulin with resveratrol and its biological implications. Biomacromolecule. 9, 50-56. https://doi.org/10.1021/bm700728k -
Line, V. L. S., Remondetto, G. E., and Subirade, M. (2005) Cold gelation of
$\beta$ -lactoglobulin oil-in-water emulsions. Food Hydrocolloid. 19, 269-278. https://doi.org/10.1016/j.foodhyd.2004.06.004 - Livney, Y. D. (2010) Milk proteins as vehicles for bioactives. Curr. Opin. Colloid Interface Sci. 15, 73-83. https://doi.org/10.1016/j.cocis.2009.11.002
- McClements, D. J., Decker, E. A., and Weiss, J. (2007) Emulsion-based delivery systems for lipophilic bioactive components. J. Food Sci. 72, R109-R124. https://doi.org/10.1111/j.1750-3841.2007.00507.x
- Monahan, F. J., German, J. B., and Kinsella, J. E. (1995) Effect of pH and temperature on protein unfolding and thiol/ disulfide interchange reactions during heat-induced gelation of whey proteins. J. Agric. Food Chem. 43, 46-52. https://doi.org/10.1021/jf00049a010
- Moro, A., Gatti, C., and Delorenzi, N. (2001) Hydrophobicity of whey protein concentrates measured by fluorescence quenching and its relation with surface functional properties. J. Agric. Food Chem. 49, 4784-4789. https://doi.org/10.1021/jf001132e
- Raikos, V. (2010) Effect of heat treatment on milk protein functionality at emulsion interfaces. A review. Food Hydrocolloid. 24, 259-265. https://doi.org/10.1016/j.foodhyd.2009.10.014
- Ron, N., Zimet, P., Bargarum, J., and Livney, Y. D. (2010) Beta-lactoglobulin-polysaccharide complexes as nanovehicles for hydrophobic nutraceuticals in non-fat foods and clear beverages. Int. Dairy J. 20, 686-693. https://doi.org/10.1016/j.idairyj.2010.04.001
-
Schmitt, C., Bovay, C., Vuilliomenet, A. M., Rouvet, M., Bovetto, L., Barbar, R., and Sanchez, C. (2009) Multiscale characterization of individualized
$\beta$ -lactoglobulin mcirogels formed upon heat treatment under narrow pH range conditions. Langmuir 25, 7899-7909. https://doi.org/10.1021/la900501n - Schmidt, R. H., Packard, V. S., and Morris, H. A. (1984) Effect of processing on whey protein functionality. J. Dairy Sci. 67, 2723-2733. https://doi.org/10.3168/jds.S0022-0302(84)81630-6
- Solans, C., Izguierdo, P., and Nolla, J. (2005) Nano-emulsions. Curr. Opin. Colloid Interface Sci. 10, 102-110. https://doi.org/10.1016/j.cocis.2005.06.004
- Whistler, R. L. and BeMiller, J. N. (1997) Alginates. In: Carbohydrate chemistry for food scientists. Eagan press, MN, pp. 195-202.
-
Xia, F., Jin, H., Zhao, Y., and Guo, X. (2012) Preparation of coenzyme
$Q_{10}$ liposomes using supercritical anti-solvent technique. J. Microencapsul. 29, 21-29. https://doi.org/10.3109/02652048.2011.629742 -
Xia, S., Xu, S, and Zhang, X. (2006) Optimization in the preparation of Coenzyme
$Q_{10}$ nanoliposomes. J. Agric. Food Chem. 54, 6358-6366. https://doi.org/10.1021/jf060405o - Yen, F. L., Wu, T. H., Tzeng, C. W., Lin, L. T., and Lin, C. C. (2010) Curcumin nanoparticles improve the physicochemical properties of curcumin and effectively enhance its antioxidant and antihepatoma activities. J. Agric. Food Chem. 58, 7376-7382. https://doi.org/10.1021/jf100135h
-
Yoo, S. H., Song, Y. B., Chang, P. S., and Lee, H. G. (2006) Microencapsulation of
$\alpha$ -tocopherol using sodium alginate and its controlled release properties. Int. J. Biol. Macromol. 38, 25-30. https://doi.org/10.1016/j.ijbiomac.2005.12.013 -
Zimet, P. and Livney, Y. D. (2009) Beta-lactoglobulin and its nanocomplexes with pectin as vehicles for
$\omega$ -3 polyunsaturated fatty acids. Food Hydrocolloid. 23, 1120-1126. https://doi.org/10.1016/j.foodhyd.2008.10.008
피인용 문헌
- β-lactoglobulin stabilized nanemulsions—Formulation and process factors affecting droplet size and nanoemulsion stability vol.500, pp.1-2, 2016, https://doi.org/10.1016/j.ijpharm.2016.01.035
- Physicochemical Characterization and Potential Prebiotic Effect of Whey Protein Isolate/Inulin Nano Complex vol.36, pp.2, 2016, https://doi.org/10.5851/kosfa.2016.36.2.267
- Cellular Uptake and Cytotoxicity of β-Lactoglobulin Nanoparticles: The Effects of Particle Size and Surface Charge vol.28, pp.3, 2015, https://doi.org/10.5713/ajas.14.0761
- Physicochemical Property and Oxidative Stability of Whey Protein Concentrate Multiple Nanoemulsion Containing Fish Oil vol.82, pp.2, 2017, https://doi.org/10.1111/1750-3841.13591
- Manufacture and Characterization of Water-in-oil-in-water (W1/O/W2) Nano Multiple Emulsion Prepared with Whey Protein Concentrate vol.48, pp.6, 2014, https://doi.org/10.14397/jals.2014.48.6.301
- Application of whey protein isolate in bone regeneration: Effects on growth and osteogenic differentiation of bone-forming cells vol.101, pp.1, 2018, https://doi.org/10.3168/jds.2017-13119
- Bioaccessibility of β-Lactoglobulin Nanoemulsions Containing Coenzyme Q10: Impact of Droplet Size on the Bioaccessibility of Coenzyme Q10 vol.38, pp.6, 2018, https://doi.org/10.5851/kosfa.2018.e65
- Comparison of dry- and wet-heat induced changes in physicochemical properties of whey protein in absence or presence of inulin pp.2092-6456, 2019, https://doi.org/10.1007/s10068-019-00577-w
- Development of Two-Step Temperature Process to Modulate the Physicochemical Properties of β-lactoglobulin Nanoparticles vol.37, pp.1, 2013, https://doi.org/10.5851/kosfa.2017.37.1.123
- 산양유 단백질 분해물/키토올리고당 나노 전달체 제조 및 물리화학적 특성연구 vol.35, pp.3, 2013, https://doi.org/10.22424/jmsb.2017.35.3.208
- 식품 소재를 이용한 나노전달체의 제조 및 유식품 적용에 관한 고찰 vol.36, pp.4, 2013, https://doi.org/10.22424/jmsb.2018.36.4.187
- Manufacture and Physicochemical Properties of Chitosan Oligosaccharide/A2 β-Casein Nano-Delivery System Entrapped with Resveratrol vol.39, pp.5, 2013, https://doi.org/10.5851/kosfa.2019.e74
- Development and Characterization of Whey Protein-Based Nano-Delivery Systems: A Review vol.24, pp.18, 2013, https://doi.org/10.3390/molecules24183254
- Milk Protein-Stabilized Emulsion Delivery System and Its Application to Foods vol.38, pp.4, 2013, https://doi.org/10.22424/jdsb.2020.38.4.189
- 케이신 포스포펩티드/키토올리고당 나노 복합체의 유식품 적용 연구 vol.39, pp.1, 2013, https://doi.org/10.22424/jdsb.2021.39.1.27