DOI QR코드

DOI QR Code

Virtual Simulation of Temperature Distribution throughout Beef Packages with Time-temperature Indicator (TTI) Labels

  • Kim, Min-Jung (Department of Food Science and Technology, Dongguk University-Seoul) ;
  • Min, Sang-Gi (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Lee, Seung Ju (Department of Food Science and Technology, Dongguk University-Seoul)
  • Received : 2012.09.10
  • Accepted : 2013.01.02
  • Published : 2013.02.28

Abstract

If the time-temperature indicator (TTI) experienced a different temperature than the accompanied packaged food, influenced by heat transfer between the TTI, package, and ambient air, TTI would incorrectly predict the food quality changes with temperature. Temperature distributions of a finite slab with different sizes, representing beef packaged with TTI, were estimated by the finite element method (FEM). The thermal properties of the beef and TTI, such as heat capacity, density, and heat conductivity, were estimated from the relevant equations using their chemical compositions. The FEM simulations were performed for three cases: different locations of TTIs on the beef, different thicknesses of beef, and non-isothermal conditions of ambient air. The TTIs were mounted in four different locations on the beef. There was little difference in temperature between four locations of the TTI on the package surface. As the thickness of the slab increased, the temperature of the TTI changed faster, followed by the corner surface, as well as middle and bottom parts, indicating the possible error for temperature agreement between the TTI and the slab. Consequently, it was found that any place on the package could be selected for TTI attachment, but the package size should carefully be determined within a tolerable error of temperature.

Keywords

References

  1. Abdalla, H. and Paul, S. R. (1985) Simulation of thawing of foods using finite element method. J. Food Process Eng. 7, 273-286. https://doi.org/10.1111/j.1745-4530.1985.tb00311.x
  2. Alabbas, S. H., Ashwortha, D. C., Bezzaaa, B., Momina, S. A., and Narayanaswamy, R. (1996) Factors affecting the response time of an optical-fiber reflectance pH sensor. Sensors Actuators A. 51, 129-134.
  3. Aversa, M., Curcio, S., Calabro, V., and Iorio, G. (2007) An analysis of the transport phenomena occurring during food drying process. J. Food Eng. 78, 922-933. https://doi.org/10.1016/j.jfoodeng.2005.12.005
  4. Batty, J. C. and Folkman, S. L. (1983) Food Engineering Fundamentals. John Wiley & Sons, Inc.
  5. Bobelyn, E., Hertog, M. L. A. T. M., and Nicola, B. M. (2006) Applicability of an enzymatic time temperature integrator as a quality indicator for mushrooms in the distribution chain. Postharvest Biol. Technol. 42, 104-114. https://doi.org/10.1016/j.postharvbio.2006.05.011
  6. Chen, D. D., Singh, R. K., Haghighi, K., and Nelson, P. E. (1993) Finite element analysis of temperature distribution in microwaved cylindrical potato tissues. J. Food Eng. 18, 351-368. https://doi.org/10.1016/0260-8774(93)90052-L
  7. Choi, Y. and Okos, M. R. (1985) Effects of temperature and composition on the thermal properties of foods. In: Food Engineering and Process Applications, Le Maguer, M. and Jelen, P. (eds) Elsevier Inc., NY, Vol. 1, pp. 93-101.
  8. Datskos, P. G. and Lavrik, N. V. (2004) Uncooled infrared MEMS detectors. In: Smart sensors and MEMS. Yurish, S. Y. and Gomes, M. T. S. R. (eds) Kluwer Academic Publishers, Netherlands, Vol. 181, pp. 381-419.
  9. Ellouze, M., Pichaud, M., Bonaiti, C., Coroller, L., Couvert, O., Thuault, D., and Vaillant, R. (2008) Modelling pH evolution and lactic acid production in the growth medium of a lactic acid bacterium: application to set a biological TTI. Int. J. Food Microbiol. 128, 101-107. https://doi.org/10.1016/j.ijfoodmicro.2008.06.035
  10. Farinu, A. and Baik, O. D. (2008) Convective mass transfer coefficients in finite element simulations of deep fat frying of sweet potato. J. Food Eng. 89, 187-194. https://doi.org/10.1016/j.jfoodeng.2008.04.024
  11. Floury, J., Carson, J., and Phan, Q. T. (2008) Modeling thermal conductivity in heterogeneous media with the finite element method. Food Bioprocess Tech. 1, 161-170. https://doi.org/10.1007/s11947-007-0001-6
  12. Giannakourou, M. C., Koutsoumanis, K., Nychas, G. J., and Taoukis, P. S. (2005) Field evaluation of the application of time temperature integrators for monitoring fish quality in the chill chain. Int. J. Food Microbiol. 102, 323-336. https://doi.org/10.1016/j.ijfoodmicro.2004.11.037
  13. Jia, C. C., Sun, D., and Cao, C. W. (2000) Finite element prediction of transient temperature distribution in a grain storage bin. J. Agr. Eng. Res. 76, 323-330. https://doi.org/10.1006/jaer.2000.0533
  14. Kenny, T. (2005) Sensor fundamentals. In: Sensor Technology Handbook. Wilson, J. S. (ed) Elsevier Inc., UK, pp. 1-20.
  15. Kerry, J. P., O'grady, M. N., and Hogan, S. A. (2006) Past, current and potential utilization of active and intelligent packaging systems for meat and muscle-based products: a review. Meat Sci. 74, 113-130. https://doi.org/10.1016/j.meatsci.2006.04.024
  16. Kress-Rogers, E. (1998) Terms in instrumentation and sensors technology. In: Instrumentation and Sensors for the Food Industry. Kress-Rodgers, E. (ed) Woodhead Publishing Ltd, UK, pp. 673-691.
  17. Lee, J. M. and Lee, S. J. (2008) Kinetic modeling for predicting the qualities of beef and color of enzyme time-temperature integrator during storage. Food Eng. Prog. 12, 241-246.
  18. Mehauden, K., Cox, P. W., Bakalis, S., Simmons, M. J. H., Tucker, G. S., and Fryer, P. J. (2007) A novel method to evaluate the applicability of time temperature integrators to different temperature profiles. Innov. Food Sci. Emerg. Tech. 8, 507-514. https://doi.org/10.1016/j.ifset.2007.03.001
  19. Neethirajan, S., Jayas, D. S., and Sadistap, S. (2009) Carbon dioxide ($CO_2$) sensors for the agri-food industry: a review. Food Bioprocess Tech. 2, 115-121. https://doi.org/10.1007/s11947-008-0154-y
  20. Nicolai, B. M., Verboven, P., and Scheerlinck, N. (2001) The modeling of heat and mass transfer. In: Food Process Modeling. Tijskens, L. M. N., Hertog, M. L. A. T. M., and Nicolai, B. M. (Eds) Woodhead Publishing Limited, Abington Hall, Abington, Cambridge, CB1 6AH, UK, pp. 60-86.
  21. Park, H. J., Shim, S. D., Min, S. G., and Lee, S. J. (2009) Mathematical simulation of the temperature dependence of time-temperature integrator (TTI) and meat qualities. Korean J. Food Sci. An. 29, 349-355. https://doi.org/10.5851/kosfa.2009.29.3.349
  22. Pandit, R. B. and Prasad, S. (2003) Finite element analysis of microwave heating of potato: transient temperature profile. J. Food Eng. 60, 193-202. https://doi.org/10.1016/S0260-8774(03)00040-2
  23. Puri, V. M. and Anantheswaran, R. C. (1993) Finite element method in food processing: a review. J. Food Eng. 19, 247-274. https://doi.org/10.1016/0260-8774(93)90046-M
  24. Santos, M. V., Zaritzky, N., and Califano, A. (2010) A control strategy to assure safety conditions in the thermal treatment of meat products using a numerical algorithms. Food Control 21, 191-197. https://doi.org/10.1016/j.foodcont.2009.05.009
  25. Sun, D. W. and Zhu, X. (1999) Effect of heat transfer direction on the numerical prediction of beef freezing process. J. Food Eng. 42, 45-50. https://doi.org/10.1016/S0260-8774(99)00101-6
  26. Vaikousi, H., Biliaderis, C. G., and Koutsoumanis, K. P. (2009) Applicability of a microbial time temperature indicator (TTI) for monitoring spoilage of modified atmosphere packed minced meat. Int. J. Food Microbiol. 133, 272-278. https://doi.org/10.1016/j.ijfoodmicro.2009.05.030
  27. Wang, L. and Sun, D. W. (2002a) Modeling three-dimensional transient heat transfer of roasted meat during air blast cooling by the finite element method. J. Food Eng. 51, 319-328. https://doi.org/10.1016/S0260-8774(01)00074-7
  28. Wang, L. and Sun, D. W. (2002b) Evaluation of performance of slow air, air blast and water immersion cooling methods in the cooked meat industry by finite element method. J. Food Eng. 51, 329-340. https://doi.org/10.1016/S0260-8774(01)00075-9
  29. Yoon, S. H., Lee, C. H., Kim, D. Y., Kim, J. W., and Park, K. H. (1994) Time-temperature indicator using phospholipidphospholipase system and application to storage of frozen pork. J. Food Sci. 59, 490-493. https://doi.org/10.1111/j.1365-2621.1994.tb05544.x