DOI QR코드

DOI QR Code

Optimization of Gold Leaching from the Refractory Sulfide Concentrate by HCl-NaClO-FeCl3 Solution

HCl-NaClO-FeCl3 용액을 이용한 저항성 황화광물 정광으로부터 금 용출 최적화

  • Kim, Bong-Ju (Department of Energy and Resource Engineering, Chosun University) ;
  • Cho, Kang-Hee (Department of Energy and Resource Engineering, Chosun University) ;
  • Lee, Jong-Ju (Department of Energy and Resource Engineering, Chosun University) ;
  • Choi, Nag-Choul (Engineering Research Institute, Chonnam National University) ;
  • Park, Cheon-Young (Department of Energy and Resource Engineering, Chosun University)
  • 김봉주 (조선대학교 에너지자원공학과) ;
  • 조강희 (조선대학교 에너지자원공학과) ;
  • 이종주 (조선대학교 에너지자원공학과) ;
  • 최낙철 (전남대학교 공업기술연구소) ;
  • 박천영 (조선대학교 에너지자원공학과)
  • Received : 2012.09.25
  • Accepted : 2013.02.14
  • Published : 2013.02.28

Abstract

In order to optimize gold leaching from refractory sulfide concentrate, a HCl-NaClO-$FeCl_3$ solution with varying attributes was applied to the roasted concentrate from Uil mine. The gold from Uil mine occurs in the form of invisible gold that is difficult to leach. The results of the gold leaching experiments showed that the best gold leaching parameters were $550^{\circ}C$ of roasting temperature, 2.0 M of concentration, 1.0% of pulp density, and $70^{\circ}C$ of leaching temperature. It is confirmed that the HCl-NaClO-$FeCl_3$ solution was an environmentally friendly method to leach gold and silver from the refractory sulfide concentrate as an alternative lixiviant to cyanide.

저항성 황화광물 정광으로부터 금 용출을 최적화시키기 위하여 HCl-NaClO-$FeCl_3$ 용액과 다양한 변수를 유일광산 소성정광에 적용하였다. 유일광산의 gold는 용출시키기 어려운 비가시성 gold로 산출되었다. 다양한 변수를 이용하여 용출실험을 수행한 결과, 소성온도 $550^{\circ}C$, 첨가량 2.0 M, 광액농도 1.0% 그리고 용출온도 $70^{\circ}C$에서 최대의 gold 용출율을 얻었다. HCl-NaClO-$FeCl_3$ 용액은 황화광물 정광으로부터 금과 은을 친환경적으로 용출시킬 수 있는 시안 대체 용매제 일 것으로 사료된다.

Keywords

References

  1. Akcil, A. (2003) Destruction of cyanide in gold mill effluents: biological versus chemical treatments, Biotechnology Advances, v.21, p.501-511. https://doi.org/10.1016/S0734-9750(03)00099-5
  2. Akcil, A. and Mudder, T. (2003) Microbial destruction of cyanide wastes in gold mining: process review, Biotechnology Letters, v.25, p.445-450. https://doi.org/10.1023/A:1022608213814
  3. Akretche, D.E., Slimane, S.K. and Kerdjoudj, H. (1995) Selective leaching of a polymetallic complex ore by sulphuric acid and thiourea mixed with sea water, Hydrometallurgy, v.38, p.189-204. https://doi.org/10.1016/0304-386X(94)00046-6
  4. Almeida, M.F. and Amarante, M.A. (1995) Leaching of a silver bearing sulphide by-product with cyanide, thiourea and chloride solutions, Minerals Engineering, v.8, p.257-271. https://doi.org/10.1016/0892-6875(94)00124-U
  5. Baghalha, M. (2007) Leaching of an oxide gold ore with chloride/hypochlorite solutions, International Journal of Mineral Processing, v.82, p.178-186. https://doi.org/10.1016/j.minpro.2006.09.001
  6. Barbieri, L., Giovanardi, R., Lancellotti, I. and Michelazzi, M. (2010) A new environmentally fiendly process for the recovery of gold from electronic waste, Environ Chem Lett., v.8, p.171-178. https://doi.org/10.1007/s10311-009-0205-2
  7. Bard, G. and Sobral, G.S. (2008) Extraction of gold, silver and copper from the copper electrorefining anode slime: separation of the metals, Global Symposium on recycling, waste treatment and clean technology, p.141-148.
  8. Coderre, F. and Dixon, D. (1999) Modeling the cyanide heap leaching of cupriferous gold ores, part 1: introduction and interpretation of laboratory cilumn leaching data, Hydrometallurgy, v.52, p.151-175. https://doi.org/10.1016/S0304-386X(99)00016-X
  9. Cunningham, S.A. (2005) Incident, accident, catastrophe: cyanide on the danube, Diasters, v.29, p.99-128. https://doi.org/10.1111/j.0361-3666.2005.00276.x
  10. Davenport, W.G., King, M., Schlesinger, M. and Biswas, A.K. (2002) Extractive metallurgy of copper, Pergamon, 432p.
  11. Donmez, B., Ekinci, Z., Celik, C. and Colak, S. (1999) Optimisation of the chlorination of gold in decopperized anode slime in aqueous medium, Hydrometallurgy, v.52, p.81-90. https://doi.org/10.1016/S0304-386X(99)00009-2
  12. Dunn, J.G. and Chamberlain, A.C. (1997) The recovery of gold from refractory arsenopyrite concentrates by pyrolysis-oxidation, Minerals Engineering, v.10, p.919-928. https://doi.org/10.1016/S0892-6875(97)00074-5
  13. Dunn, J.G., Ibrado, A.S. and Graham, J. (1995) Pyrolysis of arsenopyrite for gold recovery by cyanidation, Minerals Engineering, v.8, p.459-471. https://doi.org/10.1016/0892-6875(95)00010-N
  14. Filmer, A.O. (1982) The dissolution of gold from roasted pyrite concentrate, Journal of the South African Institute of Mining and metallurgy, March, p.90-94.
  15. Garcia, O. Jr., Bigham, J.M. and Tuovinen, O.H. (1995) Sphalerite oxidation by Thiobacillus ferrooxidans and Thiobacillus thiooxidans, Canadian Journal of Microbiology, v.41, p.578-584. https://doi.org/10.1139/m95-077
  16. Guerra, E. and Dreisinger, D.B. (1999) A study of the factors affecting copper cementation of gold from ammoniacal thiosulfate solution, Hydrometallurgy, v.51, p.155-172. https://doi.org/10.1016/S0304-386X(98)00061-9
  17. Hilson, G. and Monhemius, A.J. (2006) Alternative to cyanide in the gold mining industry: what prospects for the future?, Journal of Cleaner production, v.14, p.1158-1167. https://doi.org/10.1016/j.jclepro.2004.09.005
  18. Hinton, J.J., Veiga, M.M. and Veiga, A.T.C. (2003) Clean artisanal gold mining: a utopian approach?, Journal of Cleaner Production, v.11, p.99-115. https://doi.org/10.1016/S0959-6526(02)00031-8
  19. Jeffrey, M.I., Breuer P.L. and Choo, W.L. (2001) A kinetic study that compares the leaching of gold in the cyanide, thiosulfate, and chloride systems, Metallurgical and Materials Transactions B, 32B, December, p.979-986.
  20. Kozin, L.F, and Melekhin, V.T. (2004) Extraction of gold from ores and concentrates by leaching with the use of cyanides and alternative reagents, Russian Journal of Applied Chemistry, v.77, p.1573-1592. https://doi.org/10.1007/s11167-005-0077-6
  21. Kulandaisamy, S., Rethinaraj, J.P., Adaikkalam, P., Srinivasan, G.N. and Raghavan, M. (2003) The aqueous recovery of gold from electronic scrap, Recycling, Augst, p.35-41.
  22. Lindstrom, E.B., Gunneriusson, E. and Tuovinen, O.H. (1992) Bacterial oxidation of refractory sulfide ores for gold recovery, Critical Reviews in Biotechnology, v.12, p.133-155. https://doi.org/10.3109/07388559209069190
  23. Linge, H.G. (1995) Electrolytic process for refractory arsenopyritc gold ores, Minerals Engineering, v.8, p.1327-1331. https://doi.org/10.1016/0892-6875(95)00099-C
  24. Maddox, L.M., Bancroft, G.M., Scaini, M.J. and Lorimer, J.W. (1998) Invisible gold: comparison of Au deposition on pyrite and arsenopyrite, American Mineralogist, v.83, p.1240-1245.
  25. Marsden, J. and House, I. (1992) The chemistry of gold extraction, Ellis Horwood, p.69-71.
  26. Moran, R. (1999) Cyanidation uncertainties, Mineral Policy Center Issue Paper No.1.
  27. Murthy, D.S.R. and Prasad, P.M. (1996) Leaching of gold and silver from Miller process dross through non-cyanide leachants, Hydrometallurgy, v.42, p.27-33. https://doi.org/10.1016/0304-386X(95)00049-M
  28. Nam, K.S., Jung, B.H., An, J.W., Ha, T.J., Tran, T. and Kim, M.J. (2008) Use of chloride-hypochlorite leachants to recover gold from tailing, International Journal of Mineral Processing, v.86, p.131-140. https://doi.org/10.1016/j.minpro.2007.12.003
  29. Prasad, M.S., Mensah-Biney, R. and Pizarro, R.S. (1991) Modern trends in gold processing-overview, Minerals Engineering, v.4, p.1257-1277. https://doi.org/10.1016/0892-6875(91)90171-Q
  30. Puvvada, G.V.K. and Murthy, D.S.R. (2000) Selective precious metals leaching from a chalcopyrite concentrate using chloride/hypochlorite media, Hydrometallurgy, v.58, p.185-191. https://doi.org/10.1016/S0304-386X(00)00083-9
  31. Robinson, J.J. (1988) The extraction of gold from sulhidic concentrates by roasting and cyanidation, J. S. Atr. Inst. Metall., v.88, p.117-130.
  32. Saleh, S.M., Said, S.A. and El-Shahawi, M.S. (2001) Extraction and recovery of Au, Sb and Sn from electrorefined solid waste, Analytica Chimica Acta, v.436, p.69-77. https://doi.org/10.1016/S0003-2670(01)00866-2
  33. Senanayake, G. (2004) Gold leaching in non-cyanide lixiviant system: critical issues on fundamentals and applications, Minerals Engineering, v.17, p.785-801. https://doi.org/10.1016/j.mineng.2004.01.008
  34. Syed, S. (2012) Recovery of gold from secondary sources-a review, Hydrometallurgy, v.115-116, p.30-51. https://doi.org/10.1016/j.hydromet.2011.12.012
  35. Vinals, J., Nunez, C. and Herreros, O. (1995) Kinetics of the aqueous chlorination of gold in suspended particles, Hydrometallurgy, v.38, p.125-147. https://doi.org/10.1016/0304-386X(95)94407-N
  36. Wan, R.Y. and LeVier, K.M. (2003) Solution chemistry factors for gold thiosulfate heap leaching, International Journal of Mineral Processing, v.72, p.311-322. https://doi.org/10.1016/S0301-7516(03)00107-8
  37. Yamasue, E., Minamino, R., Numata, T., Najajima, K., Murakami, S., Daigo, I., Hashimoto, S., Okumura, H. and Ishihara, K.N. (2009) Novel evaluation method of elemental recyclability from urban mine-concept of urban ore TMR-, Materials Transactions, v.50, p.1536-1540. https://doi.org/10.2320/matertrans.MBW200816
  38. Yang, S., Blum, N., Rahders, E. and Zhang, Z. (1998) The nature of invisible gold in sulfide from the Xiangxi Au-Sb-W ore deposit in Northwestern Hunan, People's Republic of China, The Canadian Mineralogist, v.36, p.1361-1372.
  39. Yannopoulos, J.C. (1991) The extractive metallurgy of gold, Van Nostrand Reinhold, 281p.