DOI QR코드

DOI QR Code

Antioxidant and Anti-adipogenic Effects of PineXol®

PineXol®의 항산화 및 지방세포 분화 억제 효과

  • Lee, Young Jun (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Han, Ohan Taek (Nutrapham Co., Ltd.) ;
  • Choi, Hyeon-Son (Department of Food Science and Biotechnology, CHA University) ;
  • Lee, Boo Yong (Department of Food Science and Biotechnology, CHA University) ;
  • Chung, Hyun-Jung (Department of Food and Nutrition, Inha University) ;
  • Lee, Ok-Hwan (Department of Food Science and Biotechnology, Kangwon National University)
  • 이영준 (강원대학교 식품생명공학과) ;
  • 한완택 ((주)뉴트라팜) ;
  • 최현선 (차의과학대학교 식품생명공학과) ;
  • 이부용 (차의과학대학교 식품생명공학과) ;
  • 정현정 (인하대학교 식품영양학과) ;
  • 이옥환 (강원대학교 식품생명공학과)
  • Received : 2012.11.06
  • Accepted : 2012.12.11
  • Published : 2013.02.28

Abstract

Pine bark extract is made from the bark of Pinus densiflora which naturally contains occurring phytochemicals such as phenolic compounds. PineXol$^{(R)}$ from products of pine bark extract is sold under the brand name. The aim of this study was to evaluate the total phenol, total flavonoids contents and antioxidant activity of the PineXol$^{(R)}$ as well as to assess the lipid accumulation during adipogenesis of 3T3-L1 cells. Our results demonstrate that the total phenolic and flavonoids contents of the PineXol$^{(R)}$ were $717.40{\pm}6.86$ GAE mg/mL and $54.44{\pm}0.01$ RE mg/mL, respectively. The antioxidative activities of the PineXol$^{(R)}$ were significantly increased in a dose dependent manner on DPPH (1,1-Diphenyl-2-picryl hydrazyl) radical scavenging, ABTS (2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt) radical scavenging, FRAP (ferric reducing antioxidant power) activity, reducing power, nitrite radical scavenging activity and ORAC (Oxygen radical absorbance capacity) value. In addition, the PineXol$^{(R)}$ inhibited the adipocyte differentiation of 3T3-L1 preadipocytes. Exposure to 200 ${\mu}g/mL$, PineXol$^{(R)}$ significantly reduced lipid accumulation (~80%) in 3T3-L1 cells compared to control cells.

소나무 껍질 추출물은 높은 항산화 활성을 가지는 것으로 많은 연구 결과를 통해 조사되어 왔으며, 해외에서는 이미 프랑스 해송 껍질 추출물인 피크노제놀(pycnogenol)에 관한 연구가 많이 이루어진 반면, 우리나라 적송 껍질 추출물(PineXol$^{(R)}$)의 생리활성 효과에 대해서는 아직 연구가 많이 이루어지지 못했다. 따라서 본 연구에서는 우리나라 적송 껍질 추출물인 PineXol$^{(R)}$의 항산화 활성 및 anti-adipogenic 활성을 평가하였다. PineXol$^{(R)}$의 총 페놀 및 플라보노이드 함량은 각각 $717.40{\pm}6.86$ GAE mg/g 및 $54.44{\pm}0.01$ RE mg/g으로 측정되었다. 또한 다양한 항산화 평가 모델(DPPH, ABTS, FRAP, 환원력)을 통하여 PineXol$^{(R)}$의 항산화 활성을 측정한 결과, 농도가 증가함에 따라 항산화 활성이 유의적으로 증가하였으며, 대조군으로 사용한 동일한 농도의 아스코르빈산과 유사한 항산화 활성을 나타내었다. 또한 ORAC value는 $693.97{\pm}14.13{\mu}M$ TE/g으로 측정되었고, 1.0 mg/mL의 농도에서 55.39%의 아질산염소거능을 나타내었다. PineXol$^{(R)}$은 3T3-L1 지방세포에서 세포독성을 나타내지 않았으며, 분화과정동안 50, 100 및 200 ${\mu}g/mL$의 농도에서의 지방축적량은 각각 $66.85{\pm}5.87$, $44.59{\pm}5.71$$20.85{\pm}2.78%$의 농도가 증가함에 따른 유의적인 억제효과를 보였다. 이상의 결과로부터, PineXol$^{(R)}$은 항산화 활성 및 지방세포 분화억제 효능을 갖으며, 천연물 유래 항산화제로써 활용 가능성이 높은 것으로 기대된다.

Keywords

References

  1. Gutteridge JMC, Halliwell B. Antioxidants In nutrition, Health, and Disease. Oxford University Press. London, UK. pp. 1-62 (1994)
  2. Fridovich I. Superoxide dismutase. An adaption to a paramagnetic gas. J. Biol. Chem. 264: 7761-7764 (1989)
  3. Lee OH, Lee BY, Lee J, Lee HB, Son JY, Park CS, Shetty K, Kim YC. Assessment of phenolics-enriched extract and fractions of olive leaves and their antioxidant activities. Bioresour. Technol. 100: 6107-6113 (2009) https://doi.org/10.1016/j.biortech.2009.06.059
  4. Kim HK, Kwon YJ, Kim YE, Nahmgang B. Changes of total polyphenol content and antioxidant activity of aster scaber thunb extracts with different microwave assisted extraction conditions. Korean J. Food Preserv. 11: 88-95 (2004)
  5. Kim TK, Shin HD, Lee YH. Stabilization of polyphenolic antioxidants using inclusion complexation with cyclodextrin and their utilization as the fresh-food preservative. Korean J. Food Sci. Technol. 35: 266-272 (2003)
  6. Kalt W. Effects of production and processing factors on major fruit and vegetable antioxidant. J. Food Sci. 70: 11-19 (2006)
  7. Lee OH, Kwon YI, Hong HD, Park CS, Lee BY, Kim YC. Production of reactive oxygen species and changes in antioxidant enzyme activites during differentiation of 3T3-L1 adipocyte. J. Korean Soc. Appl. Biol. Chem. 52: 70-75 (2009)
  8. Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Invest. 114: 1752-1761 (2004) https://doi.org/10.1172/JCI21625
  9. Yamashita A, Soga Y, Iwamoto Y, Asano T, Li Y, Abiko Y, Nishimura F. DNA microarray analyses of genes expressed differentially in 3T3-L1 adipocytes co-cultured with murine macrophage cell line RAW264.7 in the presence of the toll-like receptor 4 ligand bacterial endotoxin. Int. J. Obesity 32: 1725-1729 (2008) https://doi.org/10.1038/ijo.2008.153
  10. Grimm T, Schafer A, Hogger P. Antioxidant activity and inhibition of matrix metalloproteinases by metabolites of maritime pine bark extract (pycnogenol). Free Radical. Bio. Med. 36: 811-822 (2005)
  11. Torras MA, Faura CA, Schonlau F, Rohdewald P. Antimicrobial activity of pycnogenol. Phytother. Res. 19: 647-648 (2005) https://doi.org/10.1002/ptr.1662
  12. Rohdewald PA. Review of the French maritime pine bark extract (pycnogenol), a herbal medication with a diverse clinical pharmacology. Int. J. Clin. Pharm. Th. 40: 158-168 (2002) https://doi.org/10.5414/CPP40158
  13. Saliou C, Rimbach G, Moini H, McLaughlin L, Hosseini S, Lee J, Watson RR, Packer L. Solar ultraviolet-induced erythema in human skin and nuclear factor-kappa-$\beta$-dependent gene expression in keratinocytes are modulated by a French maritime pine bark extract. Free Radical Bio. Med. 30: 154-160 (2002)
  14. Hasegawa, N. Inhibition of lipogenesis by pycnogenol. Phytother. Res. 14: 472-473 (2002)
  15. Choi JH, Choi MK, Han OT, Han SJ, Chung SJ, Shim CK, Kim DD. Evaluation of skin absorption of catechin from topical formulations containing Korea pine bark extract ($PineXol^{(R)}$). J. Korean Pharm. Sci. 37: 359-364 (2007)
  16. Sato M, Ramarathnam N, Suzuki Y, Ohkubo T, Takeuchi M, Ochi H. Varietal differences in the phenolic content and superoxide radical scavenging potential of wines from different sources. J. Agr. Food Chem. 44: 37-44 (1996) https://doi.org/10.1021/jf950190a
  17. Moreno MIN, Isla MIN, Sampietro AR, Vattuone MA. Comparison of the free radical scavenging activity of propolis from several region of Argentina. J. Ethnopharmacol. 71: 109-114 (2000) https://doi.org/10.1016/S0378-8741(99)00189-0
  18. Kim JH, Park JH, Park SD, Choi SY, Seong JH, Hoon KD. Preparation and antioxidant activity of health drink with extract powders from safflower (Carthamus tinctorius L.) seed. Korean J. Food Sci. Technol. 34: 617-624 (2002)
  19. Roberta R, Nicoletta P, Anna P, Anath P, Min Y, Catherine RE. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio. Med. 26: 1231-1237 (1999) https://doi.org/10.1016/S0891-5849(98)00315-3
  20. Benzie I, Strain J. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: The FRAP assay. Anal. Biochem. 239: 70-76 (1996) https://doi.org/10.1006/abio.1996.0292
  21. Oyaizu M. Studies on products of the browning reaction. Antioxidative activities of browning reaction products prepared from glucosamine Jpn. J. Nutr. 44: 307-315 (1986)
  22. Gutfinger T. Polyphenols in olive oils. J. Am. Oil. Chem. Soc. 58: 966-967 (1981) https://doi.org/10.1007/BF02659771
  23. Ou B, Hampsch-Woodill M, Prior RL. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J. Agr. Food Chem. 49: 4619-4626 (2001) https://doi.org/10.1021/jf010586o
  24. Blumberg JM, Tzameli I, Astapova I, Lam FS, Flier JS, Hollenberg AN. Complex role of the vitamin D receptor and its ligand in adipogenesis in 3T3-L1 cells. J. Biol. Chem. 28: 11205-11213 (2006)
  25. Cho YJ, Ju IS, Kim BC, Lee WS, Kim MJ, Lee BG, An BJ, Kim JH, Kwon OJ. Biological activity of omija (Schizandra chinensis Baillon) extracts. J. Korean Soc. Appl. Biol. Chem. 50: 198-203 (2007)
  26. Shin DB, Lee DW, Yang R, Kim JA. Antioxidative properties and flavonoids contents of matured Citrus peel extracts. Food Sci. Biotechnol. 15: 357-362 (2006)
  27. Ku CS, Jang JP, Mun SP. Exploitation of polyohenol-rich pone barks for potent antioxidant activity. J. Wood Sci. 53: 524-528 (2007) https://doi.org/10.1007/s10086-007-0896-6
  28. Szabo MR, Idioiu C, Chambre D, Lupea AX. Improved DPPH determination for antioxidant activity spectrophotometric assay. Chem. Pap. 61: 214-216 (2007) https://doi.org/10.2478/s11696-007-0022-7
  29. Que F, Mao L, Zhu C, Xie G. Antioxidant properties of Chineses yellow wine, its concentrate, and volatiles. LWT-Food Sci. Technol. 39: 111-117 (2006) https://doi.org/10.1016/j.lwt.2005.01.001
  30. Li H, Choi YM, Lee JS, Park JS, Yeon KS, Han CD. Drying and antioxidant characteristics of the shiitake (Lentinus edodes) mushroom in a conveyer-type far-infrared dryer. J. Korean Soc. Food. Sci. Nutr. 36: 250-254 (2007) https://doi.org/10.3746/jkfn.2007.36.2.250
  31. Jeong JW, Lee YC, Jung SW, Lee KM. Flavor components of citron juice as affected by the extraction method. Korean J. Food Sci. Technol. 26: 709-712 (1994)
  32. Prior RL, Hoang H, Gu L, Wu X, Bacchiocca M, Howard L, Hampsch-Woodill M, Huang D, Ou B, Jacob R. Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORACFL) of plasma and other biological and food samples. J. Agr. Food Chem. 51: 3273-3279 (2003) https://doi.org/10.1021/jf0262256
  33. Park JH, Park HM, Kang SJ, Kang EJ, Lee DH, Kim DI. Originals: Quality characteristics and granule manufacture of mulberry and blueberry fruit extracts. Korean J. Food Cookery Sci. 28: 375-382 (2012) https://doi.org/10.9724/kfcs.2012.28.4.375
  34. Woo SJ, Lee HJ. Residual nitrite and nitrate in home processed dry sausage and ham. Korean J. Nutr. Soc. 15: 186-193 (1982)
  35. Park CS, Kwon CJ, Choi MA, Park GS, Choi KH. Antioxidant and nitrite scevenging of mugwort and pine needle extracts. Korean J. Food Preserv. 9: 248-252 (2002)
  36. Lee OH, Seo MJ, Choi HS, Lee BY. Pycnogenol inhibits lipid accumulation in 3T3-L1 adipocytes with the modulation of reactive oxygen species (ROS) production associated with antioxidant enzyme responses. Phytother. Res. 3: 403-411 (2012)

Cited by

  1. Anti-Oxidant and Anti-Adipogenic Effects of Ethanol Extracts from Wheat Germ and Wheat Germ Fermented with Aspergillus oryzae vol.20, pp.1, 2015, https://doi.org/10.3746/pnf.2015.20.1.29
  2. Antioxidant and Anti-adipogenic Effects of Kohlrabi and Radish Sprout Extracts vol.46, pp.5, 2014, https://doi.org/10.9721/KJFST.2014.46.5.531
  3. Anti-obese and Antioxidant activities of Spica prunellae Extract in 3T3-L1 and HepG2 cells vol.18, pp.4, 2014, https://doi.org/10.13050/foodengprog.2014.18.4.413
  4. Anti-oxidant and anti-adipogenic effects of acorn (Quercus acutissima CARR.) shell extracts via regulation of wnt signaling in 3T3-L1 cells vol.25, pp.3, 2016, https://doi.org/10.1007/s10068-016-0144-1
  5. Radical Scavenging and Anti-Obesity Effects of 50% Ethanol Extract from Fermented Curcuma longa L. vol.44, pp.2, 2015, https://doi.org/10.3746/jkfn.2015.44.2.281
  6. Protective Effect of PineXol®on Hydrogen Peroxide-induced Apoptosis on SK-N-MC Cells and Focal Ischemia Rodent Models vol.29, pp.6, 2016, https://doi.org/10.9799/ksfan.2016.29.6.923
  7. Radical Scavenging and Anti-obesity Effects of Various Extracts from Turmeric (Curcuma longa L.) vol.42, pp.12, 2013, https://doi.org/10.3746/jkfn.2013.42.12.1908
  8. Effects of drying methods on quality characteristics and antioxidative effects of Omija (Schizandra chinesis bailon) vol.21, pp.3, 2014, https://doi.org/10.11002/kjfp.2014.21.3.341
  9. Antioxidant Properties of Hot Water Extract of Lycopus lucidus Trucz Tubers vol.28, pp.1, 2017, https://doi.org/10.7856/kjcls.2017.28.1.103
  10. Antioxidant Activity and Inhibitory Effect of Aster scaber Thunb. Extract on Adipocyte Differentiation in 3T3-L1 Cells vol.45, pp.3, 2013, https://doi.org/10.9721/KJFST.2013.45.3.356
  11. Anti-Adipogenic Effects of Ethanol Extracts Prepared from Selected Medicinal Herbs in 3T3-L1 Cells vol.21, pp.3, 2016, https://doi.org/10.3746/pnf.2016.21.3.227