References
- Amaki, W. and T. Hirai. 2008. Photomorphogenic responses of horticultural crops to monochromatic light, p. 29-40. In: E. Goto (ed.). Agri-photonics-Advances in plant factories with LED lighting. CMC Press, Tokyo, Japan (in Japanese)
- Brown, C.S., A.C. Schuerger, and J.C. Sager. 1995. Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting. J. Amer. Soc. Hort. Sci. 120:808-813.
- Fang, W. and R.C. Jao. 2000. A review on artificial lighting of tissue cultures and transplants, p. 108-113. In: C. Kubota and C. Chun (eds.). Transplant production in the 21st century. Kluwer Academic Publishers, Dordrecht, The Netherlands.
- Fukuda, N., M. Fujita, Y. Ohta, S. Sase, S. Nishimura, and H. Ezura. 2008. Directional blue light irradiation triggers epidermal cell elongation of abaxial side resulting in inhibition of leaf epinasty in geranium under red light condition. Sci. Hort. 115:176-182. https://doi.org/10.1016/j.scienta.2007.08.006
- Goins, G.D., N.C., Yorio, M.M. Sanwo, and C.S. Brown. 1997. Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting. J. Exp. Bot. 48:1407-1413. https://doi.org/10.1093/jxb/48.7.1407
- Goto, E. 2011. Application of artificial light sources for plant production. J. Illuminating Eng. Inst. Japan 95:200-204. (in Japanese with English abstract)
- Hogewonign, S.W., G. Trouwborst, H. Maljaars, H. Poorter, W. van Ieperen, and J. Harbinson. 2010. Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumissativus grown under different combinations of red and blue light. J. Exp. Bot. 61:3107-3117. https://doi.org/10.1093/jxb/erq132
- Jang, Y.A., E. Goto, Y. Ishigami, B.H. Mun, and C.H. Chun. 2011. Effects of light intensity and relative humidity on photosynthesis, growth and graft-take of grafted cucumber transplants during healing and acclimatization. Hort. Environ. Biotechnol. 52:331-338. https://doi.org/10.1007/s13580-011-0009-8
- Kim, H.H., F.D. Goins, R.M. Wheeler, and J.C. Sager. 2004. Green-light supplementation for enhanced lettuce growth under red and blue-light-emitting diodes. HortScience 39:1617-1622.
- Lee, J.G., S.S. Oh, S.H. Cha, Y.A. Jang, S.Y. Kim, Y.C. Um, and S.R. Cheong. 2010. Effects of red/blue light ratio and short-term light quality conversion on growth and anthocyanin contents of baby leaf lettuce. J. Bio-Environ. Cont. 19:351-359.
- Lee, J.M., and M. Oda. 2003. Grafting of herbaceous vegetable and ornamental crops. Hort. Rev. 28:61-121.
- Liu, X., S. Guo, Z. Xu, and X. Jiao. 2011. Regulation of chloroplast ultrastructure, cross-section anatomy of leaves, and morphology of stomata of cherry tomato by different light irradiations of light emitting diodes. HortScience 46:217-221.
- Louws, F.J., C.L. Rivard, and C. Kubota. 2010. Grafting fruiting vegetables to manage soilborne pathogens, foliar pathogens, arthropods and weeds. Sci. Hort. 127:127-146. https://doi.org/10.1016/j.scienta.2010.09.023
- Luft, J.H. 1973. Embedding media-old and new, p. 1-34. In: J.K. Koehler (ed.). Advance techniques in biological electron microscopy. Springer-Verlag, Berlin and New York.
- Macedo, A.F., M.V. Leal-Costa, E.S. Tavares, C.L.S. Lage, and M.A. Esquibel. 2011. The effect of light quality on leaf production and development of in vitro-cultured plants of Alternantherra brasilianan Kuntze. Environ. Experimental Botany 70:43-50. https://doi.org/10.1016/j.envexpbot.2010.05.012
- Massa, G.D., H.H. Kim, R.M. Wheeler, and C.A. Mitchell. 2008. Plant productivity in response to LED lighting. HortScience 43:1951-1953.
- Matsuda, R., K. Ohashi-Kaneko, K. Fujiwara, E. Goto, and K. Kurata. 2004. Photosynthetic characteristics of rice leaves grown under red light with or without supplemental blue light. Plant cell Physiol. 45:1870-1874. https://doi.org/10.1093/pcp/pch203
- McNellis, T.W. and X.W. Deng. 1995. Light control of seedling morphogenetic pattern. Plant Cell 7:1749-1761. https://doi.org/10.1105/tpc.7.11.1749
- Mun, B.H., Y.A. Jang, E. Goto, Y. Ishigami, and C.H. Chun. 2011. Measurement System of whole-canopy dioxide exchange rates in grafted cucumber transplants in which scions were exposed to different water regimes using a semi-open multi-chamber. Sci. Hort. 130:607-614. https://doi.org/10.1016/j.scienta.2011.08.017
- Nobuoka, T., T. Nishimoto, and K. Toi, 2005. Wind and light promote graft-take and growth of grafted tomato seedlings. J. Japan. Soc. Hort. Sci. 74:170-175. (in Japanese with English abstract) https://doi.org/10.2503/jjshs.74.170
- Savvas, D., G. Colla, Y. Rouphael, and D. Schwarz. 2010. Amelioration of heavy metal and nutrient stress in fruit vegetables by grafting. Sci. Hort. 127:156-161. https://doi.org/10.1016/j.scienta.2010.09.011
- Schuerger, A.C., C.S. Brown, and E.C. Stryjewski. 1997. Anatomical features of pepper plants (Capsicum annuum L.) grown under red light-emitting diodes supplemented with blue or far-red light. Ann. Bot. 79:273-282. https://doi.org/10.1006/anbo.1996.0341
- Schwarz, D., Y. Rouphael, G. Colla, and J.H. Venema. 2010. Grafting as a tool to improve tolerance of vegetables to abiotic stresses: Thermal stress, water stress and organic pollutants. Sci. Hort. 127:162-171. https://doi.org/10.1016/j.scienta.2010.09.016
- Shibuya, T., J. Tsuruyama, Y. Kitaya, and M. Kiyota. 2006. Enhancement of photosynthesis and growth of tomato seedlings by forced ventilation within the canopy. Sci. Hort. 109:218-222. https://doi.org/10.1016/j.scienta.2006.04.009
- Shibuya, T. and T. Kozai. 1998. Effects of air current speed on net photosynthetic and evapotranspiration rates of a tomato plug sheet under artificial light. Environ. Control Biol. 36:131-136. https://doi.org/10.2525/ecb1963.36.131
- Tennessen, D.J., E.L. Singsaas, and T.D. Sharkey. 1994. Light-emitting diodes as a light source for photosynthesis research. Photosynth. Res. 39:85-92. https://doi.org/10.1007/BF00027146
- Yorio, N.C., G.D. Goins, and H.R. Kagie. 2001. Improving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation. HortScience 36:380-383.
- van Iersel, M.W. and B. Bugbee. 2000. A multi-chamber, semi-continuous, crop carbon dioxide exchange system: Design, calibration, and data interpretation. J. Amer. Soc. Hort. Sci. 125:86-92.
Cited by
- Effect of Supplementary Light Source on Quality of Grafted Tomato Seedlings and Expression of Two Photosynthetic Genes vol.8, pp.10, 2018, https://doi.org/10.3390/agronomy8100207
- Comparisons of Different Lighting Systems for Horticultural Seedling Production Aimed at Energy Saving vol.10, pp.9, 2018, https://doi.org/10.3390/su10093351
- Effects of photosynthetic photon flux and carbon dioxide concentration on the photosynthesis and growth of grafted pepper transplants during healing and acclimatization vol.55, pp.5, 2013, https://doi.org/10.1007/s13580-014-0221-4
- 접목 전 대목 및 접수의 양수분 관리가 고추의 접목활착 및 접목묘의 생육에 미치는 영향 vol.23, pp.4, 2013, https://doi.org/10.12791/ksbec.2014.23.4.364
- 인공광형 폐쇄형 육묘시스템 내 광량 및 플러그 트레이 규격에 따른 오이 접수 및 호박대목의 생육특성 vol.23, pp.4, 2014, https://doi.org/10.12791/ksbec.2014.23.4.383
- LED 광원과 광도에 따른 참외의 묘소질 및 정식 후 생육 변화 vol.25, pp.4, 2013, https://doi.org/10.12791/ksbec.2016.25.4.294
- 접목활착 후 순화시 차광조건에 따른 토마토와 고추 접목묘의 생육 vol.30, pp.1, 2013, https://doi.org/10.12791/ksbec.2021.30.1.010
- Blue Light Improves Photosynthetic Performance during Healing and Acclimatization of Grafted Watermelon Seedlings vol.22, pp.15, 2013, https://doi.org/10.3390/ijms22158043
- Growth and Energy Use Efficiency of Grafted Tomato Transplants as Affected by LED Light Quality and Photon Flux Density vol.11, pp.9, 2013, https://doi.org/10.3390/agriculture11090816