DOI QR코드

DOI QR Code

등온열처리에 따른 2.25Cr-1Mo강의 초음파 특성 변화

Change in Ultrasonic Characteristics with Isothermal Heat Treatment of 2.25Cr-1Mo Steel

  • 남영현 (한국표준과학연구원 재료측정표준센터) ;
  • 백운봉 (한국표준과학연구원 재료측정표준센터) ;
  • 박종서 (한국표준과학연구원 재료측정표준센터) ;
  • 남승훈 (한국표준과학연구원 재료측정표준센터)
  • Nam, Young-Hyun (Center for Material Measurement, Korea Research Institute of Standards and Science) ;
  • Baek, Un-Bong (Center for Material Measurement, Korea Research Institute of Standards and Science) ;
  • Park, Jong-Seo (Center for Material Measurement, Korea Research Institute of Standards and Science) ;
  • Nahm, Seung-Hoon (Center for Material Measurement, Korea Research Institute of Standards and Science)
  • 투고 : 2012.08.02
  • 심사 : 2012.09.10
  • 발행 : 2013.03.01

초록

본 논문은 등온열처리 온도 및 시간에 따른 2.25Cr-1Mo강의 초음파 특성 변화를 조사하였다. Charpy 충격시험과 경도시험이 3종류의 열처리조건을 가지는 각 시편들에 대하여 실시되었다. 종파를 이용한 펄스-에코법이 초음파의 감쇠와 속도 측정에 사용되었다. 연취성천이온도(FATT)는 등온열처리 시간이 길어짐에 따라 증가하였는데, 이는 인성이 감소되고 있음을 의미한다. 등온열처리 시간과 온도의 증가와 함께 종파의 속도 및 초음파의 감쇠계수는 증가하였다.

The ultrasonic characteristics of 2.25Cr-1Mo steel were investigated in relation to the isothermal heat treatment temperature and time. Charpy impact tests and hardness tests were conducted on individual specimens with three different heat treatment conditions. A pulse-echo method with longitudinal waves was used to measure the attenuation and velocity of ultrasonic waves. The FATT (fracture appearance transition temperature) increased with an increase in the isothermal heat treatment time, which implies that the toughness decreased. As the isothermal heat treatment time and temperature increased, the longitudinal wave velocity and ultrasonic attenuation coefficient were raised.

키워드

참고문헌

  1. Hasegawa, Y. and Kawamura, S., 1996, "Present Status of The Maintenance Works for The Long Run Operation of Petroleum Refineries and Petrochemical Plants," Japan welding Society, Vol. 65, pp. 162-164. https://doi.org/10.2207/qjjws1943.65.2_162
  2. Hasegawa, Y., 1987, "Hydrogen Attacked Failures and Its Detecting Methods," Japan welding Society, Vol. 56, pp. 393-400. https://doi.org/10.2207/qjjws1943.56.393
  3. Hasegawa, Y., 1987, "Nondestructive Testing Methods for Detecting Temper Embrittlement of Low Alloy Cr-Mo Steels," Japan welding Society, Vol. 56, pp. 401-410. https://doi.org/10.2207/qjjws1943.56.401
  4. Standard method for determining average grain size E1112-88, 1992, Annual book of ASTM Standards, Philadephia, pp. 294-319.
  5. Kim, C. S., Park, I.-K. and Jhang, K.-Y., 2009, "Nonlinear Ultrasonic Characterization of Thermal Degradation in Ferritic 2.25Cr-1Mo Steel," NDT&E International, Vol. 42, pp. 204-209. https://doi.org/10.1016/j.ndteint.2008.09.002
  6. Park, I.-K., Park, U.-S., Kim, C.-S., Kim, H.-M., Kwun, S.-I. and Byeon, J.-W., 2001, "A Study on the High Frequency Ultrasonic Attenuation Characterization in Artificially Aging Degraded 2.25Cr-1Mo Steel," Journal of the Korean Society for Nondestructive Testing, Vol. 21, pp. 439-445.
  7. Kim, C. S., Byeon, J. W. and Park, I.-K., 2008, "Microstructural Characterization for Structural Health Monitoring of Heat-Resisting Rotor Steels," Journal of the Korean Society for Nondestructive Testing, Vol. 28, pp. 177-183.
  8. Byeon, J. W. and Kwun, S. I., 2002, "Evaluation of Microstructure and Ductile-Brittle Transition Temperature in Thermally Aged 2.25Cr-1Mo Steel by Electrical Resistivity Measurement," Journal of the Korean Society for Nondestructive Testing, Vol. 22, pp. 284-291.
  9. Nam, Y. H., Ahn, B. and Lee, S. S., 2003, "Evaluation on Material Properties of 3Cr-1Mo-0.25V Steel by Electromagnetic Methods," Trans. Korean Soc. Mech. Eng. A, Vol. 27, pp. 255-261. https://doi.org/10.3795/KSME-A.2003.27.2.255
  10. Nam, Y. H., 2000, "Evaluation of Fracture Appearance Transition Temperature to Pressure Vessel by Ultrasonics," Journal of the Korean Society for Nondestructive Testing, Vol. 20, pp. 373-380.
  11. Nam, Y. H., Kim, Y.-I. and Nahm, S. H., 2006, "Evaluation of Fracture Appearance Transition Temperature to Forged 3Cr-1Mo-0.25V Steel using Ultrasonic Characteristics," Materials Letters, Vol. 60, pp. 3577-3581. https://doi.org/10.1016/j.matlet.2006.03.063
  12. Nam, Y. H., Seong, U. H., 1999, "Prediction of Fracture Appearance Transition Temperature(FATT) to Steel by Ultrasonic and Barkhausen Noise Method," Trans. Korean Soc. Mech. Eng. A, Vol. 23, pp. 1215-1222.
  13. Jeong, H., Nahm, S.-H., Jhang, K.-Y. and Nam, Y.-H., 2002, "Evaluation of Fracture Toughness Degradation of CrMoV Rotor Steels Based on Ultrasonic Nonlinearity Measurements," KSME International Journal, Vol. 16, pp. 147-154.
  14. Lee, J. M., Nam, Y. H., Ahn, B., Nahm, S. H., Lee, S. S. and Lee, O. S., 2002, "Evaluation of 1Cr-1Mo-0.25V Steel Degradation Using Magnetic Barkhausen Noise," Trans. Korean Soc. Mech. Eng. A, Vol. 26, pp. 1262-1269. https://doi.org/10.3795/KSME-A.2002.26.7.1262