DOI QR코드

DOI QR Code

황해 중동부해역에서 CTD와 음향탐지기로 관측한 내부파와 표층 혼합

Internal Waves and Surface Mixing Observed by CTD and Echo Sounder in the mid-eastern Yellow Sea

  • 이상호 (군산대학교 해양과학대학 해양학과) ;
  • 최병주 (군산대학교 해양과학대학 해양학과) ;
  • 정우진 (국립해양조사원)
  • Lee, Sang-Ho (Department of Oceanography, College of Ocean Science and Technology, Kunsan National University) ;
  • Choi, Byoung-Ju (Department of Oceanography, College of Ocean Science and Technology, Kunsan National University) ;
  • Jeong, Woo Jin (Korea Hydrographic and Oceanographic Administration)
  • 투고 : 2013.01.18
  • 심사 : 2013.02.07
  • 발행 : 2013.02.28

초록

황해 중동부 해역에서 2012년 9월에 동서방향으로 설정된 단면과 금강 하구 외측 저염수 지역의 정박지점에서 음향탐지기를 이용하여 음향 후방산란 구조(acoustic backscatter profile)를 측정하였으며 CTD로 물성구조도 관측하였다. 수심 50 m 부근 해역에 발달한 해저사주 주변에서 조석전선이 형성되었다. 이 사주의 동쪽에서 저조 때 음향탐지기로 관측된 내부파는 파고가 약 15 m, 평균파장이 500 m정도이며, 파형이 비선형 오목형 파(depression wave)였다. 이 내부파는 남동쪽으로 흐르는 조류가 사주를 지나면서 만든 조석내부파로 해석되었다. 약한 비선형성 단독 내부파 이론을 적용하였을 때 오목형 내부파들의 전파속도는 약 50 cm/s 정도이고, 주기는 16~18분 정도로 계산되었다. 강한 음향 산란층이 국지적으로 7 m 정도 상승된 지역의 해면에서 Dinoflagelates Cochlodinium에 의한 적조가 관찰되었다. 금강하구 외측 정박지점에서 한 시간간격으로 관측한 물성구조는 해륙풍과 조류에 따른 염분약층 깊이 변동을 보여 주었다. 창조류가 북동쪽으로 강하게 흐르고 육풍이 서쪽으로 7 m/s 이상 불었을 때에는 염분약층이 일시적으로 상승하였고, 음향구조 영상은 해면 하 약 5 m까지 복잡한 구조를 보였는데 포획과 관입 형태를 갖는 강하고 약한 산란신호의 기울어진 음향구조가 수 십초 간격으로 교대로 나타났다. 표면 혼합층에서의 이러한 음향구조는 황해 중동부 연안역에서는 처음으로 관측되었다. 음향 후방산란 영상과 탁도 자료는 창조류와 육풍에 의한 표층 취송류가 만드는 수직적인 유속차(shear)에 의해 맑은 하층수가 탁한 상층으로 관입 혹은 포획된 것임을 제시한다.

Acoustic backscatter profiles were measured by Eco-sounder along an east-west section in the mid-eastern Yellow Sea and at an anchoring station in the low salinity region off the Keum River estuary in September 2012, with observing physical water property structure by CTD. Tidal front was established around the sand ridge developed in 50 m depth region. Internal waves measured by Eco-sounder during low tide period in the eastern side of the sand ridge were nonlinear depression waves with wave height of 15 m and mean wavelength of 500 m. These waves were interpreted into tidal internal waves that were produced by tidal current flowing over the sand ridge to the southeast. When weakly non-linear soliton model was applied, propagation speed and period of these internal depression wave were 50 m/s and 16~18 min. Red tides by Dinoflagelates Cochlodinium were observed in the sea surface where strong acoustic scattering layer was raised up to 7 m. Hourly CTD profiles taken at the anchoring station off the Keum River estuary showed the halocline depth change by tidal current and land-sea breeze. When tidal current flowed strongly to the northeast during flood period and land-breeze of 7 m/s blew to the west, the halocline was temporally raised up as much as 2 m and acoustic profile images showed a complex structure in the surface layer within 5-m depth: in tens of seconds the declined acoustic structure of strong and weak scattering signals alternatively appeared with entrainment and intrusion shape. These acoustic profile structures in the surface mixed layer were observed for the first time in the coastal sea of the mid-eastern Yellow Sea. The acoustic profile images and turbidity data suggest that relatively transparent low-layer water be intruded or entrained into the turbid upper-layer water by vertical shear between flood current and land breeze-induced surface current.

키워드

참고문헌

  1. Apel, J.R., 2002. Oceanic Internal Waves and Solitons. In: An Atlas of Oceanic Internal Solitary-like Waves and their Properties by C.R. Jackson (2004) prepared for Office of Naval Research - Code 322 PO. 1-36.
  2. Choi, B.H., 1980. A tidal model of the Yellow Sea and the eastern China Sea. KORI Report 80-82, 72pp.
  3. Choi, H.Y., S.H. Lee and K.Y. Yoo, 1999. Salinity distribution in the mid-eastern Yellow Sea during the high discharge from the Keum River weir. The Sea: Journal of Korean Society of Oceanography 4: 1-9 (in Korean with English Abstract).
  4. De Silva, I.P.D., H.J.S. Fernando, F. Eaton and D. Hebert, 1996. Evolution of Kelvin-Helmholtz billows in nature and laboratory, Earth Planet. Sci. Lett., 143: 217-231. https://doi.org/10.1016/0012-821X(96)00129-X
  5. Farmer, D. and L. Armi, 1999. The generation and trapping of solitary waves over topography. Science, 283: 188-190. https://doi.org/10.1126/science.283.5399.188
  6. Farmer D.M. and J.D. Smith, 1980. Tidal interaction of stratified flow with a sill in Knight Inlet. Deep-Sea Res., 27A: 239−254.
  7. Gerkema, T. and J.T.F. Zimmerman, 2008. An introduction to internal waves, Lecture notes, Royal NIOZ, Texel, 207pp.
  8. Jackson, C.R., 2004. An atlas of internal solitary-like waves and theirproperties, 2nd ed., available at http://www.internalwaveatlas.com/Atlas2_index.html.
  9. Haury, L.R., M.G. Briscoe and M.H. Orr, 1979. Tidally generated internal wave packets in Massachusetts Bay. Nature 278: 312-317. https://doi.org/10.1038/278312a0
  10. Pham, H.T., 2010. Turbulence and Internal Waves in Numerical Modelsof the Equatorial Undercurrents System. Ph.D. Thesis, University of California, Sand Diego, 187pp.
  11. Hollaway, P.E., E. Pelinovsky and T. Talipova, 1999. A generalized Korteweg-de Vries model of internal tide transformation in the coastal zone. J. Geophys. Res., 104(C8): 18,333-18,350. https://doi.org/10.1029/1999JC900144
  12. Hsu, M.-K., A.K. Liu, and C. Liu, 2000. A study of internal waves in the China Seas and Yellow Sea using SAR. Continental Shelf Research 20: 389-410. https://doi.org/10.1016/S0278-4343(99)00078-3
  13. Jackson, C.R., 2004. An Atlas of Internal Solitary-like Waves and Their Properties, 2nd ed., Office of Naval Research, Code 322 PO. 1-36 (available at www.internalwaveatlas.com/Atlas2_index.html)
  14. KHOA, 2012. Monthly report of Korea oceanographic observation network (November). 11-1611234-000209-06, 168pp.
  15. Kim, T.R. and H.Y. Choi, 2003. The characteristics of internal waves observed by SAR and in-situ measurement data near Ocheong-Do in the Yellow Sea SAR. The Sea: J. Korean Soc. Oceanogr., 8(2): 132-137 (in Korean with English Abstract).
  16. Knauss, J., 1997. Introduction to physical oceanography (2nd ed.). Prentice-Hall. Inc. New Jersey.
  17. Kwon, K.M., B.J. Choi, S.H. Lee, Y.K. Cho and C.J. Jang, 2011. Coastal current along the eastern boundary of the Yellow Sea in summer: Numerical simulations Jr. Korean Society of Oceanography, The sea, 16(4): 155-168 (in Korean with English Abstract). https://doi.org/10.7850/jkso.2011.16.4.155
  18. Lee, J.H., I. Lozovatsky, S.T. Jang, C.J. Jang, C.S. Hong and H.J.S. Fernando, 2006. Episodes of nonlinear internal waves in the northernEast China Sea. Geophys. Res. Lett., 33, L18601, doi: 10.1029/2006GL027136.
  19. Lee, S.H., H.Y. Choi, Y.T. Son, H.K. Kwon, Y.K. Kim, J.S. Yang, H.J.Jeong and J.G. Kim, 2003. Low-salinity water and circulation in summer around the Saemangeum area in the west coast of Korea. The Sea: J. Korean Soc. Oceanogr., 8(2): 138-150 (in Korean with English Abstract).
  20. Lee, S.H., H.Y. Choi and I.S. Oh, 1995. Structure and variability of the Keum River plume in summer. Journal of Korean Society of Oceanography, 30: 125-137 (in Korean with English Abstract)
  21. Lee, S.H. and R.C. Beardsley, 1999. Influence of stratification on residual tidal currents in the Yellow Sea. J. Geophys. Res., 104: 15679−15701. https://doi.org/10.1029/1999JC900108
  22. Lee, S.H. and H.Y. Choi, 1997. A numerical model study of residual tidal currents in the mid-eastern Yellow Sea - initial stratification. The Yellow Sea, 3: 58−70.
  23. Lee, S.-H., C.-Y. Kang and B.-J. Choi, 2011. Internal Waves Observed near the Tidal Front in the eastern Yellow Sea. Proceeding of Spring Meeting of Korean Society of Oceanography, pp-08, 148p.
  24. Lie, H.J., 1989. Tidal fronts in the southern Hwanghae (Yellow Sea). Cont. Shelf Res., 9: 527−546.
  25. Moum, J.N., D.M. Farmer, W.D. Smyth, L. Armi and S. Vagle, 2003. Structure and generation of turbulence at interfaces strained by internal solitary waves propagating shoreward over the continentalshelf. J. Phys. Oceanogr., 33: 2,093-2,112. https://doi.org/10.1175/1520-0485(2003)033<2093:SAGOTA>2.0.CO;2
  26. Pham, H.T. and S. Sarkar, 2010. Internal waves and turbulence in a stable stratified jet. J. Fluid Mech. 648: 297-324, doi:10.1017/S0022112009993120.
  27. Pingree, R.D. and G.T. Mardell, 1985. Solitary internal waves in the Celtic Sea. Prog. Oceanog. 14: 431−441. https://doi.org/10.1016/0079-6611(85)90021-7
  28. Sandstrom, H. and J.A. Elliott, 1984. Internal Tide and Solitons on the Scotian Shelf: A Nutrient Pump at Work. J. Geophys. Res., 89(C4): 6415−6426. https://doi.org/10.1029/JC089iC04p06415
  29. Shin, E.J., Lee, S.H., Choi, and H.Y., 2002. Numerical model study for structure and distribution of the Keum River plume. The Sea: Journal of Korean Society of Oceanography 7: 157-170 (in Koreanwith English Abstract).
  30. Simpson, J.H. and R.D. Hunter, 1974. Front in the Irish Sea. Nature, 250: 404−406. https://doi.org/10.1038/250404a0
  31. Simpson, J.H. and R.D. Pingree, 1978. Shallow sea fronts produce by tidal stirring. In Oceanic fronts in coastal processes (ed. M.J. Bowman & W.E. Esaias), 29−42. New York: Springer-Verlag.
  32. Simpson, J.H., C.M. Allen, and N.C.G. Morris, 1978. Fronts on the continental shelf. J. Geophys. Res., 83: 4607-4614. https://doi.org/10.1029/JC083iC09p04607
  33. Son, Y.T., S.H. Lee, C.S. Kim, J.C. Lee, and G.H. Lee, 2007. Surface current variability in the Keum River Estuary (South Korea) duringsummer 2002 as observed by high-frequency radar and coastal monitoring buoy. Continental Shelf Research, 27: 43−63. https://doi.org/10.1016/j.csr.2006.08.008
  34. Strang, E.J. and H.J.S. Fernando, 2001a. Entrainment and mixing in stratified shear flows, J. Fluid Mech., 428: 349−386. https://doi.org/10.1017/S0022112000002706
  35. Strang, E.J. and H.J.S. Fernando, 2001b. Vertical mixing and transport through a stratified shear layer, J. Phys. Oceanogr., 31: 2026-2048. https://doi.org/10.1175/1520-0485(2001)031<2026:VMATTA>2.0.CO;2
  36. Thrope, S.A., 2007. An introduction to ocean turbulence. Cambridge University Press, New York, 267 pp.