DOI QR코드

DOI QR Code

A Study on Optimization of Vacuum Glazing Encapsulating Process using Frit inside a Vacuum Chamber

진공챔버 내 프리트 이용 진공유리 봉지공정 최적화에 관한 연구

  • Park, Sang Jun (Department of Mechanical Engineering, Kongju National University) ;
  • Lee, Young Lim (Department of Mechanical and Automotive Engineering, Kongju National University)
  • 박상준 (공주대학교 기계공학과) ;
  • 이영림 (공주대학교 기계자동차공학부)
  • Received : 2013.01.22
  • Accepted : 2013.02.06
  • Published : 2013.02.28

Abstract

In houses that use heating and cooling system, most of heat loss occurs through the windows, so that low-E glass, double-layered glass, and vacuum glazing are used to minimize the heat loss. In this paper, an encapsulating process that is a final process in manufacturing the vacuum glazing has been studied, and bonding in a vacuum chamber rather than atmospheric bonding was considered. For the efficiency of the encapsulating process, frit-melting temperature and bonding time were optimized with heater temperature, and the glass preheating temperature was optimized to prevent glass breakage due to thermal stress. Thus the vacuum glass was successfully manufactured based on these results and heat transmission coefficient measured was about $5.7W/m^2K$ which indicates that the internal pressure of the vacuum glazing is $10^{-2}$ torr.

냉난방을 사용하는 가정에서는 대부분 창문을 통해 열손실이 이루어지고 있는데 이를 방지하기 위해 Low-E 유리, 복층유리 또는 진공유리가 사용되고 있다. 본 논문에서는 진공유리 제작공정의 최종공정인 봉지공정에 대한 연구가 수행되었는데 기존 상압 접합이 아닌 진공챔버 내 접합이 고려되었다. 봉지과정의 효율성을 위해 진공챔버 내에서 히터온도에 따른 프리트 용융온도 및 접합시간을 최적화하였고 열응력으로 인한 유리 파손을 방지하기 위해 유리 예열온도를 최적화하였다. 이러한 결과를 바탕으로 성공적으로 진공유리를 제작하였고 측정된 열관류율은 약 $5.7W/m^2K$로 진공유리 내부압력은 약 $10^{-2}$ torr로 판명되었다.

Keywords

References

  1. H. C. Lee, "Characteristics of H2/O2 gas mixture fabricated by water electrolysis", Journal of the New science Research, Vol. 1, pp. 43-55, 1998.
  2. L. Wullschleger, H. Manz and K. Ghazi Wakili "Finite element analysis of temperature-induced deflection of vacuum glazing" Construction and Building Materials, Vol. 23, No. 3, pp.1378-1388, March, 2009. DOI: http://dx.doi.org/10.1016/j.conbuildmat.2008.07.010
  3. A. C. Fischer-cripps, R. E. Collins, G. M. Turner and E. Bezzel "Stresses and Fracture Probability in Evacuated Glazing" Building and Environment, Vol. 30, No.1, pp.41-59, 1995. DOI: http://dx.doi.org/10.1016/0360-1323(94)E0032-M
  4. A. Zoller, Hohle Glasscheibe, German Patent Application No.387655, 1913.
  5. G. Falbel, Evacuated dual glazing system, U.S. Patent Application No. 502567, 1976.
  6. D. K .Benson, C. E. Tracy, J. Susemihl, T. Potter and D. E. Soule, "Vacuum window glazings for energyefficient buildings", International Report PR-3159, Solar Energy Research Institute, Golden, CO, 1987.
  7. M. Lenzen, R. E Collins, "Long-term field tests of vacuum glazing" Solar Energy, Vol. 61, No. 1 pp.11-15, July, 1997. DOI: http://dx.doi.org/10.1016/S0038-092X(97)00038-8
  8. Y. Fang, T. K. Hyde and N. Hewitt "Predicted thermal performance of triple vacuum glazing" Solar Energy, Vol. 84, No. 12, pp. 2132-2139, December, 2010. DOI: http://dx.doi.org/10.1016/j.solener.2010.09.002
  9. J. M. Kim, J. H. Lee and T. H. Song, "Vacuum insulation properties of phenolic foam" International Journal of Heat and Mass Transfer, Vol. 55, No.19-20 pp. 5343-5349, September, 2012. DOI: http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.05.051
  10. Catia V5 R17, Dassault Systems, 2006.
  11. Ansys version 12.1. Ansys Inc
  12. I. S. Hwang and Y. L. Lee, "A Study of Adiabatic Performance for Vacuum Glazing with Design Conditions", Journal of the Korean Society of Manufacturing Technology Engineers, Vol.21, No.4, pp. 582-587, August, 2012. DOI: http://dx.doi.org/10.7735/ksmte.2012.21.4.582