DOI QR코드

DOI QR Code

멀티-기가비트 WPAN 시스템을 위한 고속 QC-LDPC 복호기 구조

High-Throughput QC-LDPC Decoder Architecture for Multi-Gigabit WPAN Systems

  • 이한호 (인하대학교 정보통신공학부) ;
  • 사부흐 (인하대학교 정보통신공학부)
  • Lee, Hanho (School of Information and Communication Engineering, Inha University) ;
  • Ajaz, Sabooh (School of Information and Communication Engineering, Inha University)
  • 투고 : 2012.08.10
  • 발행 : 2013.02.25

초록

60GHz 멀티-기가비트 WPAN 시스템을 위한 고속 QC-LDPC 복호기의 구조를 제안한다. 제안한 QC-LDPC 복호기 설계를 위하여 4 블록-병렬 계층 복호 기술과 fixed wire network 기술이 적용 되었다. 2단 파이프라이닝과 4 블록-병렬 계층 복호기술은 동작 주파수와 데이터 처리량을 개선시키는데에 큰 효과가 있다. 또한 본 제안한 복호기 구조에서 스위치 네트워크를 구현하여 위하여 fixed wire network로 간단하게 구현될 수 있으면 하드웨어 복잡도를 크게 감소시킬 수 있다. 제안한 672-비트, rate-1/2인 QC-LDPC 복호기 구조는 90-nm CMOS 표준 셀을 이용해 설계 및 합성하였다. 성능 분석 결과 제안한 QC-LDPC 복호기 구조는 794K 게이트를 가지며 클락 속도 290MHz 에서 작동한다. 12-iteration일 때 데이터 처리율은 3.9 Gbps 이며 60GHz WPAN 시스템에 적용되어 사용 될 수 있다.

A high-throughput Quasi-Cyclic Low-Density Parity-Check (QC-LDPC) decoder architecture is proposed for 60GHz multi-gigabit wireless personal area network (WPAN) applications. Two novel techniques which can apply to our selected QC-LDPC code are proposed, including a four block-parallel layered decoding technique and fixed wire network. Two-stage pipelining and four block-parallel layered decoding techniques are used to improve the clock speed and decoding throughput. Also, the fixed wire network is proposed to simplify the switch network. A 672-bit, rate-1/2 QC-LDPC decoder architecture has been designed and implemented using 90-nm CMOS standard cell technology. Synthesis results show that the proposed QC-LDPC decoder requires a 794K gate and can operate at 290 MHz to achieve a data throughput of 3.9 Gbps with a maximum of 12 iterations, which meet the requirement of 60 GHz WPAN applications.

키워드

참고문헌

  1. "Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for High Rate Wireless Personal Area Networks (WPANs): Amendment 2: Millimeter-wave based Alternative Physical Layer Extension," 2008. IEEE P802.15.3c/D04
  2. L. Liu and C.-J. R. Shi, "Sliced message passing: High throughput over- lapped decoding of high-rate low-density parity-check codes," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 11, pp. 3697-3710, Nov. 2008. https://doi.org/10.1109/TCSI.2008.926995
  3. 나영헌, 신경욱, "IEEE 802.11n용 다중모드 Layered LDPC 복호기," 대한전자공학회 논문지, 제48권 SD편, 제 11호, 18-26쪽, 2011년 11월.
  4. M. Mansour and N. Shanbhag, "High-throughput LDPC decoders," IEEE Trans. VLSI Syst., vol. 11, no. 6, pp. 976-996, Dec. 2003. https://doi.org/10.1109/TVLSI.2003.817545
  5. D. E. Hocevar, "A reduced complexity decoder architecture via layered decoding of LDPC codes," IEEE Workshop on Signal Processing Systems (SiPS), pp. 107-112, Oct. 2004.
  6. S. Kim, G. E. Sobelman, and H. Lee, "Flexible LDPC decoder architecture for high-throughput applications," in Proc. IEEE Asia Pacific Conf. Circuits Syst. (APCCAS), Macao, China, pp. 45-48, Nov. 2008.
  7. Z. Cui, Z. Wang, and Y. Liu, "High-throughput layered LDPC decoding architecture," IEEE Trans. VLSI Syst., vol. 17, no. 4, pp. 582-587, April 2009. https://doi.org/10.1109/TVLSI.2008.2005308
  8. S. Kim, G. E. Sobelman, and H. Lee, "A Reduced-Complexity Architecture for LDPC Layered Decoding Schemes," IEEE Trans. VLSI Syst., vol. 19, no. 6, pp. 1099-1103, June 2011. https://doi.org/10.1109/TVLSI.2010.2043965
  9. S. Zhao, Z. Farhad, "On implementation of Min-Sum algorithm and its modifications for decoding Low-Density Parity-Check (LDPC) codes," IEEE Trans. Commun., vol. 53, no. 4, pp. 549-554, Aug. 2005. https://doi.org/10.1109/TCOMM.2004.836563
  10. X.-Y. Shih, C.-Z. Zhan, C.-H. Lin, and A.-Y. Wu, "An 8.29 mm2 52mW Multi-Mode LDPC Decoder Design for Mobile WiMAX System in $0.13{\mu}m$CMOS Process," IEEE J. Solid-State Circuits, vol. 43, no. 3, pp. 672-683, March 2008. https://doi.org/10.1109/JSSC.2008.916606
  11. S. H. Kang and I. C. Park, "Loosely coupled memory-based decoding architecture for low density parity check codes," IEEE Trans. Circuits Syst. I, vol. 53, no. 5, pp. 1045-1056, May 2006. https://doi.org/10.1109/TCSI.2005.862181
  12. S. Hung, S. Yen, C. Chen, H. Chnag, S. Jou, C. Lee, "A 5.7Gbps row-based layered scheduling LDPC decoder for IEEE 802.15.3c applications", 2010 IEEE Asian Solid State Circuits Conference (A-SSCC), Nov. 2010.
  13. J. Sha, J. Lin, Z. Wang, L. Li, M. Gao, "LDPC decoder design for high rate wireless personal area networks", IEEE Trans. Consumer Electronics. vol. 55, no. 2, pp. 455-460, May 2009. https://doi.org/10.1109/TCE.2009.5174407
  14. Z. Cui, Z. Wang, and X. Wang, "Reducedcomplexity column-layered decoding and implementation for LDPC codes," IET Commun., vol. 5, no.15, pp. 2177-2186, Oct. 2011. https://doi.org/10.1049/iet-com.2010.1002

피인용 문헌

  1. Pipeline-Aware QC-IRA-LDPC Code and Efficient Decoder Architecture vol.51, pp.10, 2014, https://doi.org/10.5573/ieie.2014.51.10.072