DOI QR코드

DOI QR Code

High-Throughput QC-LDPC Decoder Architecture for Multi-Gigabit WPAN Systems

멀티-기가비트 WPAN 시스템을 위한 고속 QC-LDPC 복호기 구조

  • Lee, Hanho (School of Information and Communication Engineering, Inha University) ;
  • Ajaz, Sabooh (School of Information and Communication Engineering, Inha University)
  • 이한호 (인하대학교 정보통신공학부) ;
  • 사부흐 (인하대학교 정보통신공학부)
  • Received : 2012.08.10
  • Published : 2013.02.25

Abstract

A high-throughput Quasi-Cyclic Low-Density Parity-Check (QC-LDPC) decoder architecture is proposed for 60GHz multi-gigabit wireless personal area network (WPAN) applications. Two novel techniques which can apply to our selected QC-LDPC code are proposed, including a four block-parallel layered decoding technique and fixed wire network. Two-stage pipelining and four block-parallel layered decoding techniques are used to improve the clock speed and decoding throughput. Also, the fixed wire network is proposed to simplify the switch network. A 672-bit, rate-1/2 QC-LDPC decoder architecture has been designed and implemented using 90-nm CMOS standard cell technology. Synthesis results show that the proposed QC-LDPC decoder requires a 794K gate and can operate at 290 MHz to achieve a data throughput of 3.9 Gbps with a maximum of 12 iterations, which meet the requirement of 60 GHz WPAN applications.

60GHz 멀티-기가비트 WPAN 시스템을 위한 고속 QC-LDPC 복호기의 구조를 제안한다. 제안한 QC-LDPC 복호기 설계를 위하여 4 블록-병렬 계층 복호 기술과 fixed wire network 기술이 적용 되었다. 2단 파이프라이닝과 4 블록-병렬 계층 복호기술은 동작 주파수와 데이터 처리량을 개선시키는데에 큰 효과가 있다. 또한 본 제안한 복호기 구조에서 스위치 네트워크를 구현하여 위하여 fixed wire network로 간단하게 구현될 수 있으면 하드웨어 복잡도를 크게 감소시킬 수 있다. 제안한 672-비트, rate-1/2인 QC-LDPC 복호기 구조는 90-nm CMOS 표준 셀을 이용해 설계 및 합성하였다. 성능 분석 결과 제안한 QC-LDPC 복호기 구조는 794K 게이트를 가지며 클락 속도 290MHz 에서 작동한다. 12-iteration일 때 데이터 처리율은 3.9 Gbps 이며 60GHz WPAN 시스템에 적용되어 사용 될 수 있다.

Keywords

References

  1. "Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for High Rate Wireless Personal Area Networks (WPANs): Amendment 2: Millimeter-wave based Alternative Physical Layer Extension," 2008. IEEE P802.15.3c/D04
  2. L. Liu and C.-J. R. Shi, "Sliced message passing: High throughput over- lapped decoding of high-rate low-density parity-check codes," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 11, pp. 3697-3710, Nov. 2008. https://doi.org/10.1109/TCSI.2008.926995
  3. 나영헌, 신경욱, "IEEE 802.11n용 다중모드 Layered LDPC 복호기," 대한전자공학회 논문지, 제48권 SD편, 제 11호, 18-26쪽, 2011년 11월.
  4. M. Mansour and N. Shanbhag, "High-throughput LDPC decoders," IEEE Trans. VLSI Syst., vol. 11, no. 6, pp. 976-996, Dec. 2003. https://doi.org/10.1109/TVLSI.2003.817545
  5. D. E. Hocevar, "A reduced complexity decoder architecture via layered decoding of LDPC codes," IEEE Workshop on Signal Processing Systems (SiPS), pp. 107-112, Oct. 2004.
  6. S. Kim, G. E. Sobelman, and H. Lee, "Flexible LDPC decoder architecture for high-throughput applications," in Proc. IEEE Asia Pacific Conf. Circuits Syst. (APCCAS), Macao, China, pp. 45-48, Nov. 2008.
  7. Z. Cui, Z. Wang, and Y. Liu, "High-throughput layered LDPC decoding architecture," IEEE Trans. VLSI Syst., vol. 17, no. 4, pp. 582-587, April 2009. https://doi.org/10.1109/TVLSI.2008.2005308
  8. S. Kim, G. E. Sobelman, and H. Lee, "A Reduced-Complexity Architecture for LDPC Layered Decoding Schemes," IEEE Trans. VLSI Syst., vol. 19, no. 6, pp. 1099-1103, June 2011. https://doi.org/10.1109/TVLSI.2010.2043965
  9. S. Zhao, Z. Farhad, "On implementation of Min-Sum algorithm and its modifications for decoding Low-Density Parity-Check (LDPC) codes," IEEE Trans. Commun., vol. 53, no. 4, pp. 549-554, Aug. 2005. https://doi.org/10.1109/TCOMM.2004.836563
  10. X.-Y. Shih, C.-Z. Zhan, C.-H. Lin, and A.-Y. Wu, "An 8.29 mm2 52mW Multi-Mode LDPC Decoder Design for Mobile WiMAX System in $0.13{\mu}m$CMOS Process," IEEE J. Solid-State Circuits, vol. 43, no. 3, pp. 672-683, March 2008. https://doi.org/10.1109/JSSC.2008.916606
  11. S. H. Kang and I. C. Park, "Loosely coupled memory-based decoding architecture for low density parity check codes," IEEE Trans. Circuits Syst. I, vol. 53, no. 5, pp. 1045-1056, May 2006. https://doi.org/10.1109/TCSI.2005.862181
  12. S. Hung, S. Yen, C. Chen, H. Chnag, S. Jou, C. Lee, "A 5.7Gbps row-based layered scheduling LDPC decoder for IEEE 802.15.3c applications", 2010 IEEE Asian Solid State Circuits Conference (A-SSCC), Nov. 2010.
  13. J. Sha, J. Lin, Z. Wang, L. Li, M. Gao, "LDPC decoder design for high rate wireless personal area networks", IEEE Trans. Consumer Electronics. vol. 55, no. 2, pp. 455-460, May 2009. https://doi.org/10.1109/TCE.2009.5174407
  14. Z. Cui, Z. Wang, and X. Wang, "Reducedcomplexity column-layered decoding and implementation for LDPC codes," IET Commun., vol. 5, no.15, pp. 2177-2186, Oct. 2011. https://doi.org/10.1049/iet-com.2010.1002

Cited by

  1. Pipeline-Aware QC-IRA-LDPC Code and Efficient Decoder Architecture vol.51, pp.10, 2014, https://doi.org/10.5573/ieie.2014.51.10.072