DOI QR코드

DOI QR Code

Taxifolin Glycoside Blocks Human ether-a-go-go Related Gene $K^+$ Channels

  • Yun, Jihyun (Department of Physiology, College of Medicine, Chung-Ang University) ;
  • Bae, Hyemi (Department of Physiology, College of Medicine, Chung-Ang University) ;
  • Choi, Sun Eun (Department of Cosmetology Science, Nambu University) ;
  • Kim, Jung-Ha (Department of Family Medicine, College of Medicine, Chung-Ang University) ;
  • Choi, Young Wook (College of Pharmacy, Chung-Ang University) ;
  • Lim, Inja (Department of Physiology, College of Medicine, Chung-Ang University) ;
  • Lee, Chung Soo (Department of Pharmacology, College of Medicine, Chung-Ang University) ;
  • Lee, Min Won (College of Pharmacy, Chung-Ang University) ;
  • Ko, Jae-Hong (Department of Physiology, College of Medicine, Chung-Ang University) ;
  • Seo, Seong Jun (Department of Dermatology, College of Medicine, Chung-Ang University) ;
  • Bang, Hyoweon (Department of Physiology, College of Medicine, Chung-Ang University)
  • Received : 2012.10.22
  • Accepted : 2012.12.11
  • Published : 2013.02.28

Abstract

Taxifolin glycoside is a new drug candidate for the treatment of atopic dermatitis (AD). Many drugs cause side effects such as long QT syndrome by blocking the human ether-a-go-go related gene (hERG) $K^+$ channels. To determine whether taxifolin glycoside would block hERG $K^+$ channels, we recorded hERG $K^+$ currents using a whole-cell patch clamp technique. We found that taxifolin glycoside directly blocked hERG $K^+$ current in a concentration-dependent manner ($EC_{50}=9.6{\pm}0.7{\mu}M$). The activation curve of hERG $K^+$ channels was negatively shifted by taxifolin glycoside. In addition, taxifolin glycoside accelerated the activation time constant and reduced the onset of the inactivation time constant. These results suggest that taxifolin glycoside blocks hERG $K^+$ channels that function by facilitating activation and inactivation process.

Keywords

References

  1. Leung DY, Bieber T. Atopic dermatitis. Lancet. 2003;361:151-160. https://doi.org/10.1016/S0140-6736(03)12193-9
  2. Takahashi H, Hirata S, Minami H, Fukuyama Y. Triterpene and flavanone glycoside from Rhododendron simsii. Phytochemistry Phytochemistry. 2001;56:875-879. https://doi.org/10.1016/S0031-9422(00)00493-3
  3. Kim CM, Shin MK, Ahn DK, Lee KS. An unabridged dictionary of Chinese herbs. Jeongdam Publication; 1998. 1464-1472 p.
  4. Kim YJ, Choi SE, Lee MW, Lee CS. Taxifolin glycoside inhibits dendritic cell responses stimulated by lipopolysaccharide and lipoteichoic acid. J Pharm Pharmacol. 2008;60:1465-1472. https://doi.org/10.1211/jpp.60.11.0007
  5. Ahn JY, Choi SE, Jeong MS, Park KH, Moon NJ, Joo SS, Lee CS, Choi YW, Li K, Lee MK, Lee MW, Seo SJ. Effect of taxifolin glycoside on atopic dermatitis-like skin lesions in NC/Nga mice. Phytother Res. 2010;24:1071-1077.
  6. Kang MJ, Eum JY, Park SH, Kang MH, Park KH, Choi SE, Lee MW, Kang KH, Oh CH, Choi YW. Pep-1 peptide-conjugated elastic liposomal formulation of taxifolin glycoside for the treatment of atopic dermatitis in NC/Nga mice. Int J Pharm. 2010;402:198-204. https://doi.org/10.1016/j.ijpharm.2010.09.030
  7. Viskin S. Long QT syndromes and torsade de pointes. Lancet. 1999;354:1625-1633. https://doi.org/10.1016/S0140-6736(99)02107-8
  8. Kannankeril P, Roden DM, Darbar D. Drug-induced long QT syndrome. Pharmacol Rev. 2010;62:760-781. https://doi.org/10.1124/pr.110.003723
  9. Cavero I, Mestre M, Guillon JM, Crumb W. Drugs that prolong QT interval as an unwanted effect: assessing their likelihood of inducing hazardous cardiac dysrhythmias. Expert Opin Pharmacother. 2000;1:947-973. https://doi.org/10.1517/14656566.1.5.947
  10. Delisle BP, Anson BD, Rajamani S, January CT. Biology of cardiac arrhythmias: ion channel protein trafficking. Circ Res. 2004;94:1418-1428. https://doi.org/10.1161/01.RES.0000128561.28701.ea
  11. Lee SH, Hahn SJ, Min G, Kim J, Jo SH, Choe H, Choi BH. Inhibitory actions of HERG currents by the immunosuppressant drug cyclosporin a. Korean J Physiol Pharmacol. 2011;15:291-297. https://doi.org/10.4196/kjpp.2011.15.5.291
  12. Lee HA, Kim KS, Hyun SA, Park SG, Kim SJ. Wide spectrum of inhibitory effects of sertraline on cardiac ion channels. Korean J Physiol Pharmacol. 2012;16:327-332. https://doi.org/10.4196/kjpp.2012.16.5.327
  13. Zhao XL, Qi ZP, Fang C, Chen MH, Lv YJ, Li BX, Yang BF. HERG $K^{+}$ channel blockade by the novel antiviral drug sophocarpine. Biol Pharm Bull. 2008;31:627-632. https://doi.org/10.1248/bpb.31.627
  14. Towart R, Linders JT, Hermans AN, Rohrbacher J, van der Linde HJ, Ercken M, Cik M, Roevens P, Teisman A, Gallacher DJ. Blockade of the IKs potassium channel: an overlooked cardiovascular liability in drug safety screening? J Pharmacol Toxicol Methods. 2009;60:1-10. https://doi.org/10.1016/j.vascn.2009.04.197
  15. Redfern WS, Carlsson L, Davis AS, Lynch WG, MacKenzie I, Palethorpe S, Siegl PK, Strang I, Sullivan AT, Wallis R, Camm AJ, Hammond TG. Relationships between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs: evidence for a provisional safety margin in drug development. Cardiovasc Res. 2003;58:32-45. https://doi.org/10.1016/S0008-6363(02)00846-5
  16. Neubig RR, Spedding M, Kenakin T, Christopoulos A. International union of pharmacology committee on receptor nomenclature and drug classification. International union of pharmacology committee on receptor nomenclature and drug classification. XXXVIII. Update on terms and symbols in quantitative pharmacology. Pharmacol Rev. 2003;55:597-606. https://doi.org/10.1124/pr.55.4.4
  17. Recanatini M, Poluzzi E, Masetti M, Cavalli A, De Ponti F. QT prolongation through hERG $K^{+}$ channel blockade: current knowledge and strategies for the early prediction during drug development. Med Res Rev. 2005;25:133-166. https://doi.org/10.1002/med.20019

Cited by

  1. Phytochemical profile of Paulownia tomentosa (Thunb). Steud. vol.14, pp.5, 2015, https://doi.org/10.1007/s11101-014-9376-y