DOI QR코드

DOI QR Code

Generation of Coherent Sub-Terahertz Carrier with Phase Stabilization for Wireless Communications

  • Yoshimizu, Yasuyuki (Graduate School of Engineering Science, Osaka University) ;
  • Hisatake, Shintaro (Graduate School of Engineering Science, Osaka University) ;
  • Kuwano, Shigeru (NTT Access Network Service Systems Laboratories, NTT Corporation) ;
  • Terada, Jun (NTT Access Network Service Systems Laboratories, NTT Corporation) ;
  • Yoshimoto, Naoto (NTT Access Network Service Systems Laboratories, NTT Corporation) ;
  • Nagatsuma, Tadao (Graduate School of Engineering Science, Osaka University)
  • Received : 2013.07.01
  • Published : 2013.12.31

Abstract

In this paper, we present a photonic approach for generating highly stable coherent sub-terahertz (THz) signals for wireless communications. As proof-of-concept we transmit data at 100 GHz carrier frequency using on-off keying modulation and heterodyne detection. The sub-THz carrier signals are generated by photo-mixing two optical carrier signals at different frequencies, extracted from an optical frequency comb. We introduce a novel system to stabilize the phase of the optical carrier signals. Error-free transmission is successfully achieved up to a bit rate of 8.5 Gbit/s at 100 GHz.

Keywords

References

  1. T. Nagatsuma, H. -J. Song, and Y. Kado, "Challenges for ultrahigh speed wireless communications using Terahertz waves," J. Terahertz Sci. Technol., vol. 3, no. 2, pp. 55-65, 2010.
  2. T. Nagatsuma, T. Takada, H. -J. Song, K. Ajito, N. Kukutsu, and Y. Kado, "Millimater- and THz-wave photonics towards 100 Gbit/s wireless transmission," in Proc. Meeting IEEE Photon. Soc., 2010, pp. 385-386.
  3. H. -J. Song, K. Ajito, Y. Muramoto, A. Wakatsuki, T. Nagatsuma, and N. Kukutsu, "24 Gbit/s data transmission in 300 GHz band for future Terahertz communications," Electron. Lett., vol. 48, no. 15, pp. 953-954, 2012. https://doi.org/10.1049/el.2012.1708
  4. T. Nagatsuma, "Generating millimeter and Terahertz waves by photonics for communications and sensing," Tech. Dig. IMS, WE2H-1, 2013.
  5. X. Pang, A. Caballero, A. Dogadaev, V. Arlunno, L. Deng, R. Borkowski, J. S. Pedersen, D. Zibar, X. Yu, and I. T. Monroy "25 Gbit/s QPSK hybrid fiber-wireless transmission in the W-band (75-110 GHz) with remote antenna unit for in-building wireless networks," IEEE Photon. J., vol. 4, no. 3, pp. 691-698, 2012. https://doi.org/10.1109/JPHOT.2012.2193563
  6. L. Deng, M. Beltran, X. Pang, X. Zhang, V. Arlunno, Y. Zhao, A. Dogadaev, X. Yu, R. Llorente, D. Liu, and I. T. Monroy, "Fiber-wireless transmission of 8.3 Gb/s/ch QPSK-OFDM signals in 75-100 GHz band" Opt. Lett., vol. 37, no. 24, pp. 5106-5108, 2012. https://doi.org/10.1364/OL.37.005106
  7. D. Zibar, R. Sambaraju, A. C. Jambrina, J. Herrera, and I. T. Monroy, "Carrier recovery and equalization for photonic-wireless links with capacities up to 40 Gb/s in 75-110 GHz Band," in Proc. Opt. Fiber Conf., 2011, pp. 1-3.
  8. X. Pang, A. Caballero, A. Dogadaev, V. Arlunno, R. Borkowski, J. S. Pedersen, L. Deng, F. Karinou, F. Roubeau, D. Zibar, X. Yu, and I. Tafur Monroy, "100 Gb/s hybrid optical fiber-wireless link in the W-band (75- 110 GHz)," Opt. Exp., vol. 19, no. 25, pp. 24944-24949, 2011. https://doi.org/10.1364/OE.19.024944
  9. M. Beltrn, L. Deng, X. Pang, X. Zhang, Y. Zhao, X. Yu, R. Llorente, D. Liu, I. T. Monroy, "Single- and multiband OFDM photonic wireless links in the 75-110 GHz band employing optical combs," IEEE Photon. J., vol. 4, no. 5, pp. 2027-2036, 2012. https://doi.org/10.1109/JPHOT.2012.2223205
  10. L. Deng, D. M. Liu, X. D. Pang, X. Zhang, V. Arlunno, Y. Zhao, A. Caballero, A. K. Dogadaev, X. B. Yu, I. T. Monroy, M. Beltran, and R. Llorente, "42.13 Gbit/s 16QAM-OFDM photonics-wireless transmission in 75-110 GHz band," Progress Electromagn. Research, vol. 126, pp. 449- 461, 2012. https://doi.org/10.2528/PIER12013006
  11. A. Kanno, K. Inagaki, I. Morohashi, T. Sakamoto, T. Kuri, I. Hosako, T. Kawanishi, Y. Yoshida, and K. Kitayama, "20-Gb/s QPSK W-band (75- 110 GHz) wireless link in free space using radio-over-fiber technique," IEICE Electron. Exp., vol. 8, no. 8, pp. 612-617, 2011. https://doi.org/10.1587/elex.8.612
  12. A. Kanno, K. Inagaki, I. Morohashi, T. Sakamoto, T. Kuri, I. Hosako, T. Kawanishi, Y. Yoshida, and K. Kitayama, "40 Gb/sW-band (75-110 GHz) 16-QAM radio-over-fiber signal generation and its wireless transmission," Opt. Exp., vol. 19, no. 26, pp. B56-B63, 2011. https://doi.org/10.1364/OE.19.000B56
  13. A. Hirata, H. Togo, N. Shimizu, H. Takahashi, K. Okamoto, and T. Nagatsuma, "Low-phase noise photonic millimeter-wave generator using an AWG integrated with a 3-dB combiner," IEICE Trans. Electron., vol. E88-C, no. 7, pp. 1458-1464, 2005. https://doi.org/10.1093/ietele/e88-c.7.1458
  14. L. Moller, J. Federici, A. Sinyukov, C. Xie, H. C. Lim, and R. C. Giles, "Data encoding on Terahertz signals for communication and sensing," Opt. Lett., vol. 33 no. 4, pp. 393-395, 2008.
  15. K.-H. Ang, G. Chong, and Y. Li, "PID control system analysis, design, and technology," IEEE Trans. Control Syst., vol. 13, no. 4, 2005.
  16. H.-J. Song, N. Shimizu, T. Furuta, K. Suizu, H. Ito, T. Nagatsuma, H. Song, and S. member, "Broadband-frequency-tunable sub-terahertz wave generation using an optical comb, AWGs, optical switches, a uni-traveling carrier photodiode for spectroscopic applications," J. Lightw. Technol., vol. 26, no. 15, pp. 2521-2530, 2008. https://doi.org/10.1109/JLT.2008.927170