An Adaptive FLIP-Levelset Hybrid Method for Efficient Fluid Simulation

효율적인 유체 시뮬레이션을 위한 FLIP과 레벨셋의 적응형 혼합 기법

  • Received : 2013.06.24
  • Accepted : 2013.07.30
  • Published : 2013.09.01

Abstract

Fluid Implicit Particle (FLIP) method is used in Visual Effect(VFX) industries frequently because FLIP based simulation show high performance with good visual quality. However in large-scale fluid simulations, the efficiency of FLIP method is low because it requires many particles to represent large volume of water. In this papers, we propose a novel hybrid method of simulating fluids to supplement this drawback. To improve the performance of the FLIP method by reducing the number of particles, particles are deployed inside thin layers of the inner surface of water volume only. The coupling between less-disspative solutions of FLIP method and viscosity solution of level set method is achieved by introducing a new surface reconstruction method motivated by surface reconstruction method[1] and moving least squares(MLS) method[2]. Our hybrid method can generate high quality of water simulations efficiently with various multiscale features.

FLIP 기반의 유체 시뮬레이션은 품질에 대비 높은 효율을 자랑하기 때문에 Visual Effect(VFX)산업에 널리 사용되고 있다. FLIP 기술에서는 바다와 같은 대규모의 물을 시뮬레이션 할 때 시각적으로 중요하지 않은 물의 안쪽까지도 파티클을 할당해야 하기 때문에 보이는 파티클보다 보이지 않는 파티클의 개수가 훨씬 많은 경우에는 시뮬레이션 작업의 효율성이 떨어진다. 본 논문에서는 이러한 단점을 보완하기 위하여 레벨셋 (Level Set)과 Fluid Implicit Particle(FLIP) 기반의 유체 시뮬레이션 기법을 혼합(hybrid)한 효율적인 유체 시뮬레이션 기법을 제안한다. 파티클들을 물의 안쪽 표면 근처의 얇은 층에만 배치함으로써 사용되는 파티클의 갯수를 줄여서 결과적으로 시뮬레이션의 효율성을 크게 높일 수 있었다. 또한 [1]의 표면 재구성 기법과 moving least squares(MLS) [2] 기법을 결합한 새로운 유체 표면 재구성 기법을 적용하여 FLIP을 통해 격자(Grid) 기반 시뮬레이션에서 발생하는 수치적 소실을 줄이고 동시에 유체의 부드러운 표면을 유지할 수 있다. 본 논문의 혼합 시뮬레이션 기술은 높은 품질의 유체 시뮬레이션을 효율적으로 수행하여 다양한 규모의 유체를 표현할 수 있었다.

Keywords

References

  1. Y. Zhu and R. Bridson, "Animating sand as a fluid," in ACM Transactions on Graphics (TOG), vol. 24, no. 3. ACM, 2005, pp. 965-972. https://doi.org/10.1145/1073204.1073298
  2. P. Lancaster and K. Salkauskas, "Surfaces generated by moving least squares methods," Mathematics of computation, vol. 37, no. 155, pp. 141-158, 1981. https://doi.org/10.1090/S0025-5718-1981-0616367-1
  3. J. Brackbill and H. Ruppel, "Flip: A method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions," Journal of Computational Physics, vol. 65, no. 2, pp. 314-343, 1986. https://doi.org/10.1016/0021-9991(86)90211-1
  4. S. Osher and R. Fedkiw, Level set methods and dynamic implicit surfaces. Springer Verlag, 2003, vol. 153.
  5. C. Shen, J. F. O'Brien, and J. R. Shewchuk, "Interpolating and approximating implicit surfaces from polygon soup," in ACM Transactions on Graphics (TOG), vol. 23, no. 3. ACM, 2004, pp. 896-904. https://doi.org/10.1145/1015706.1015816
  6. N. Foster and D. Metaxas, "Realistic animation of liquids," Graphical models and image processing, vol. 58, no. 5, pp. 471-483, 1996. https://doi.org/10.1006/gmip.1996.0039
  7. J. Stam, "Stable fluids," in Proceedings of the 26th annual conference on Computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co., 1999, pp. 121- 128.
  8. M. Sussman and E. G. Puckett, "A coupled level set and volume-of-fluid method for computing 3d and axisymmetric incompressible two-phase flows," Journal of Computational Physics, vol. 162, no. 2, pp. 301-337, 2000. https://doi.org/10.1006/jcph.2000.6537
  9. B. Kim, Y. Liu, I. Llamas, and J. Rossignac, "Flowfixer: Using bfecc for fluid simulation," in Proceedings of the First Eurographics conference on Natural Phenomena. Eurographics Association, 2005, pp. 51-56.
  10. F. Losasso, F. Gibou, and R. Fedkiw, "Simulating water and smoke with an octree data structure," in ACM Transactions on Graphics (TOG), vol. 23, no. 3. ACM, 2004, pp. 457-462. https://doi.org/10.1145/1015706.1015745
  11. F. H. Harlow and J. E.Welch, "Numerical calculation of timedependent viscous incompressible flow of fluid with free surface," Physics of fluids, vol. 8, p. 2182, 1965. https://doi.org/10.1063/1.1761178
  12. B. Solenthaler and R. Pajarola, "Predictive-corrective incompressible sph," in ACM Transactions on Graphics (TOG), vol. 28, no. 3. ACM, 2009, p. 40.
  13. D. Enright, R. Fedkiw, J. Ferziger, and I. Mitchell, "A hybrid particle level set method for improved interface capturing," Journal of Computational Physics, vol. 183, no. 1, pp. 83- 116, 2002. https://doi.org/10.1006/jcph.2002.7166
  14. D. Enright, F. Losasso, and R. Fedkiw, "A fast and accurate semi-lagrangian particle level set method," Computers & structures, vol. 83, no. 6, pp. 479-490, 2005. https://doi.org/10.1016/j.compstruc.2004.04.024
  15. O.-y. Song, D. Kim, and H.-S. Ko, "Derivative particles for simulating detailed movements of fluids," Visualization and Computer Graphics, IEEE Transactions on, vol. 13, no. 4, pp. 711-719, 2007.
  16. A. J. Chorin, "A numerical method for solving incompressible viscous flow problems," Journal of computational physics, vol. 2, no. 1, pp. 12-26, 1967. https://doi.org/10.1016/0021-9991(67)90037-X
  17. J. Stam, "Real-time fluid dynamics for games," in Proceedings of the game developer conference, vol. 18, 2003.
  18. H. Zhao, "A fast sweeping method for eikonal equations," Mathematics of computation, vol. 74, no. 250, pp. 603-627, 2005.
  19. D. Adalsteinsson and J. A. Sethian, "The fast construction of extension velocities in level set methods," Journal of Computational Physics, vol. 148, no. 1, pp. 2-22, 1999. https://doi.org/10.1006/jcph.1998.6090
  20. M. Lentine, J. T. Gretarsson, and R. Fedkiw, "An unconditionally stable fully conservative semi-lagrangian method," Journal of Computational Physics, vol. 230, no. 8, pp. 2857- 2879, 2011. https://doi.org/10.1016/j.jcp.2010.12.036
  21. N. Chentanez and M. Muller, "Mass-conserving eulerian liquid simulation," in Proceedings of the 11th ACM SIGGRAPH/ Eurographics conference on Computer Animation. Eurographics Association, 2012, pp. 245-254.
  22. M. Muller, D. Charypar, and M. Gross, "Particle-based fluid simulation for interactive applications," in Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation. Eurographics Association, 2003, pp. 154- 159.
  23. "Flux2013," http://www.qualoth.com.
  24. "Naiad shark project," http://vimeo.com/17146564.
  25. "(flux) shark splash 1," http://youtu.be/R9T4DEzJpWI.
  26. D.-Y. K. Sun-Tae Kim, Jeong-Hyun Lee, "A case study of fluid simulation in the film 'sector7'," Korea Computer Graphics Society, vol. 18, no. 3, pp. 17-27, 2012.
  27. B. Houston, M. B. Nielsen, C. Batty, O. Nilsson, and K. Museth, "Hierarchical rle level set: A compact and versatile deformable surface representation," ACM Transactions on Graphics (TOG), vol. 25, no. 1, pp. 151-175, 2006. https://doi.org/10.1145/1122501.1122508
  28. C. W. Ryoichi Ando, Nils Thuerey, "Highly adaptive liquid simulations on tetrahedral meshes," ACM Transactions on Graphics, p. 10, 2013.
  29. R. A. Gingold and J. J. Monaghan, "Smoothed particle hydrodynamics-theory and application to non-spherical stars," Monthly notices of the royal astronomical society, vol. 181, pp. 375-389, 1977.
  30. D. Enright, S. Marschner, and R. Fedkiw, "Animation and rendering of complex water surfaces," ACM Transactions on Graphics (TOG), vol. 21, no. 3, pp. 736-744, 2002.