DOI QR코드

DOI QR Code

Flame Synthesis of Silica-Coated Iron Oxide Nanoparticles and Their Characterization

  • Jun, Kimin (School of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Yang, Sangsun (School of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Lee, Jeonghoon (School of Mechanical Engineering, Korea University of Technology and Education) ;
  • Pikhitsa, Peter V. (Global Frontier Center for Multiscale Energy Systems, Seoul National University) ;
  • Choi, Mansoo (School of Mechanical and Aerospace Engineering, Seoul National University)
  • 투고 : 2013.11.04
  • 심사 : 2013.12.26
  • 발행 : 2013.12.30

초록

We have used the modified diffusion flame burner to synthesize silica coated iron oxide nanoparticles having enhanced superparamagnetic property. Silica-encapsulated iron oxide particles were directly observed using a high resolution transmission electron microscope. From the energy dispersive X-ray spectroscopy (EDS) and zeta potential measurements, the iron oxide particles were found to be completely covered by a silica coating layer. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) measurements revealed that the iron oxide core consists of ${\gamma}-Fe_2O_3$ rather than ${\alpha}-Fe_2O_3$. Our magnetization measurements support this conclusion. Biocompatibility test of the silica-coated iron oxide nanoparticles is also conducted using the protein adsorption onto the coated particle.

키워드

참고문헌

  1. Bacri, J. C., Perzynski, R., Cabuil, D. S. V. and Massart, R. (1990). Ionic ferrofluids: A crossing of chemistry and physics. J. Magn. Magn. Mater., 85, 27-32. https://doi.org/10.1016/0304-8853(90)90010-N
  2. Bitoh, T, Ohba, K., Takamatsu, M., Shirane, T. and Chikazawa, S. (1996) Comparative study of linear and nonlinear susceptibilities of fine-particle and spin-glass systems: quantitative analysis based on the superparamagnetic blocking model. J. Magnet. Magnet. Mater. 154. 59-65. https://doi.org/10.1016/0304-8853(95)00572-2
  3. Fiorani, D., Testa, A. M., Lucari, F., D'Orazio, F. and Romero, H. (2002) Magnetic properties of maghemite nanoparticle systems: surface anisotropy and interparticle interaction effects. Physica B. 320. 122-126. https://doi.org/10.1016/S0921-4526(02)00659-2
  4. Fiorani, D., Testa, A. M., Tronc, E., Lucari, F., D'Orazio, F., and Nogues, M. (2001). Spin freezing in maghemite nanoparticle systems. J. Magn. Magn. Mater., 226, 1942-1944.
  5. Gupta, A. K. and Gupta, M. (2005). Synthesis and surface engineering of iron oxide nanoparticles for biomedical application. Biomaterials, 26. 3995-4021. https://doi.org/10.1016/j.biomaterials.2004.10.012
  6. Iijima, M., Yonemochi, Y., Kimata, M., Hasegawa, M., Tsukada, M. and Kamiya, H. (2005). Preparation of agglomeration-free hematite particles coated with silica and their reduction behavior in hydrogen. J. Colloid and Interface Sci., 287. 526-533. https://doi.org/10.1016/j.jcis.2005.02.034
  7. Janzen, C., Knipping, J., Rellinghaus, B. and Roth. P. (2003)Formation of silica-embedded iron-oxide nanoparticles in low-pressure flames. J. Nanoparticle Res., 5. 589-596. https://doi.org/10.1023/B:NANO.0000006109.37251.fd
  8. Kim, H., Kim, J., Yang, H. Suh, J., Kim, T., Han, B., Kim, D. S., Kim, S., Pikhitsa, P. V. and Choi, M. (2006). Parallel patterning of nanoparticles via electrodynamic focusing of charged aerosols. Nature Nanotechnology, 1. 117-121. https://doi.org/10.1038/nnano.2006.94
  9. Kim, T., Reis, L., Rajan, K., and Shima, M. (2005). Magnetic behavior of iron oxide nanoparticle- biomolecule assembly. J. Magn. Magn. Mater., 295. 132-138. https://doi.org/10.1016/j.jmmm.2005.01.004
  10. Lee, H., You, S., Woo, C., Lim, K., Jun, K. and Choi, M. (2009) Focused patterning of nanoparticles by controlling electric field induced particle motion. Appl.Phys. Lett. 94. 053104. https://doi.org/10.1063/1.3077158
  11. Leslie-Pelecky, D. L. and Rieke, R. D. (1996). Magnetic properties of nanostructured materials. Chem. Mater. 8. 1770-1783. https://doi.org/10.1021/cm960077f
  12. Ma, D., Guan, J., Normandin, F., Denommee, S., Enright, G., Veres, T. and Simard. B. (2006). Multifunctional nano-architecture for biomedical applications. Chem. Mater., 18. 920-1927.
  13. McIntyre, N. S., and Zetaruk, D. G. (1977). X-ray photoelectron spectroscopic studies of iron oxides. Anal. Chem. 49.1521-1529. https://doi.org/10.1021/ac50019a016
  14. Pikhitsa, P. V., Choi, M., Yang, S., Kim, J-Y., Jang, H. and Park, J-H. (2007). Fast fragmentation of metal oxide nanoparticles via reduction in oxy hydrogen flame. Appl. Phys. Lett. 90. 163106. https://doi.org/10.1063/1.2724747
  15. Santra, S., Tapec, R., Theodoropoulou, N., Dobson, J., Hebard, A. and Tan, W. (2001). Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: The effect of nonionic surfactants. Langmuir, 17. 2900-2906. https://doi.org/10.1021/la0008636
  16. Sheen, S., Yang, S.,, Jun, K. and Choi, M. (2009). One step flame method for the synthesis of coated composite nanoparticles. J. Nanopart. Res. 11(7). 1767-1775. https://doi.org/10.1007/s11051-009-9596-z
  17. Suh, J., Han, B., Okuyama, K. and Choi, M. (2005). Highly charging of nanoparticle through electrospray of nanoparticle suspension. J. Colloid Interface Sci., 287. 135-140. https://doi.org/10.1016/j.jcis.2005.01.078
  18. Yang, H., Zhang, S., Chen, X., Zhuang, Z., Xu, J. and Wang, X. (2004). Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparations. Anal. Chem., 76. 1316-1321. https://doi.org/10.1021/ac034920m
  19. Yang, S., Yi, J. H., Son, S., Jang, J., Altman, I. S., Pikhitsa, P. V. and Choi, M. (2003). Fragmentation of $Fe_{2}O_{3}$nanoparticles driven by a phase transition in a flame and their magnetic properties. Appl. Phys. Letters. 83. 4842-4844. https://doi.org/10.1063/1.1632534
  20. Yu, J. H., Lee, C. W., Im, S. S. and Lee, J. S. (2003). Structure and magnetic properties of SiO2 coated $Fe_{2}O_{3}$ nanoparticles synthesized by chemical vapor condensation process. Rev. Adv. Mater. Sci., 4. 55-59. https://doi.org/10.1016/S1468-6996(03)00007-X
  21. Zachariah, M., Aquino, M. I., Shull, R. D. and Steel, E. B. (1995) Formation of superparamagnetic nanocomposites from vapor phase condensation in a flame. NanoStructured Mater. 5, 383-392. https://doi.org/10.1016/0965-9773(95)00260-L
  22. Zubov, E., Byszewsky, P., Chabanenko, V., Kowalska, E., Gladczuk, L. and Kochkanjan, R. (2000). Superparamagnetic behavior of $C_{60}Fe$. J. Magnet. Magnet. Mater. 222. 89-96 https://doi.org/10.1016/S0304-8853(00)00539-4