Targeted Gel-Lipid Nanocapsule for Intracellular Delivery of Anticancer Arsenic Trioxide

산화비소가 내포된 표적지향형 겔-리피드 나노캡슐의 제조 및 암세포 증식 억제 효율 분석

  • Lee, Sang-Min (Department of Chemistry, The Catholic University of Korea)
  • Received : 2013.10.11
  • Accepted : 2013.11.15
  • Published : 2013.12.01

Abstract

Nanoscale drug delivery platforms have been demonstrated to exhibit the high therapeutic potential for cancer treatments by reducing the toxic side effects often associated with conventional small-molecule chemotherapy. However, limited successes have been achieved due to the lack of both targeting ability to particular cancer cells and specific triggers that can release the encapsulated drug under predefined condition. This article reports the formation of nanoscale gel-lipid capsule (GLC) for the delivery of arsenic trioxide anticancer agent. On the platform, the surface-anchored polymer chains form the cross-linked gel networks with alkyne-modified telechelic bis(oxyethylene)diamine linkers, which can trigger the release of encapsulated drug under acidic condition. The alkyne functionality also allows for the ligation of azide-modified folic acid as a targeting ligand via highly specific $Cu^I$-catalyzed [2+3] cycloaddition. The resulting folate-conjugated platform showed enhanced drug efficacy through folate receptor-mediated endocytosis process in KB nasopharyngeal cancer cells. With both targeting capability and acid-triggered drug-release property, GLCs constitute a versatile delivery platform for anticancer agents.

Keywords

Acknowledgement

Supported by : 한국연구재단, 가톨릭대학교

References

  1. Davis, M. E., Chen, Z., and Shin, D. M. "Nanoparticle therapeutics: an emerging treatment modality for cancer" Nat. Rev. Drug Discovery 7, 771-782 (2008). https://doi.org/10.1038/nrd2614
  2. Maeda, H., Wu, J., Sawa, T., Matsumura, Y., and Hori, K. "Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review" J. Controlled Release 65, 271-284 (2000). https://doi.org/10.1016/S0168-3659(99)00248-5
  3. Li, S. -D., and Huang, L. "Pharmacokinetics and Biodistribution of Nanoparticles" Mol. Pharmaceutics 5, 496-504 (2008). https://doi.org/10.1021/mp800049w
  4. Gabizon, A. A. "Stealth Liposomes and Tumor Targeting: One Step Further in the Quest for the Magic Bullet" Clin. Cancer Res. 7, 223-225 (2001).
  5. Drummond, D. C., Meyer, O., Hong, K., Kirpotin, D. B., and Papahadjopoulos, D. "Optimizing Liposomes for Delivery of Chemotherapeutic Agents to Solid Tumors" Pharmacol. Rev. 51, 691-744 (1999).
  6. Barenholz, Y. "$Doxil^{(R)}$ - The first FDA-approved nano-drug: Lessons learned" J. Controlled Release 160, 117-134 (2012). https://doi.org/10.1016/j.jconrel.2012.03.020
  7. Kim, E. S., Lu, C., Khuri, F. R., Tonda, M., Glisson, B. S., Liu, D., Jung, M., Hong, W. K., and Herbst, R. S. "A phase II study of STEALTH cisplatin (SPI-77) in patients with advanced non-small cell lung cancer" Lung Cancer 34, 427-432 (2001). https://doi.org/10.1016/S0169-5002(01)00278-1
  8. Harrington, K. J., Lewanski, C. R., Northcote, A. D., Whittaker, J., Wellbank, H., Vile, R. G., Peters, A. M., and Stewart, J. S. W. "Phase I-II study of pegylated liposomal cisplatin (SPI-$077^{TM}$) in patients with inoperable head and neck cancer" Ann. Oncol. 12, 493-496 (2001). https://doi.org/10.1023/A:1011199028318
  9. Bandak, S., Goren, D., Horowitz, A., Tzemach, D., and Gabizon, A. "Pharmacological studies of cisplatin encapsulated in long-circulating liposomes in mouse tumor models" Anti-Cancer Drugs 10, 911-920 (1999). https://doi.org/10.1097/00001813-199911000-00007
  10. Allen, T. M., and Cullis, P. R. "Drug delivery systems: Entering the mainstream" Science 303, 1818-1822 (2004). https://doi.org/10.1126/science.1095833
  11. Zhu, J., Chen, Z., Lallemand-Breitenbach, V., and de The, H. "How acute promyelocytic leukaemia revived arsenic" Nat. Rev. Cancer 2, 705-714 (2002). https://doi.org/10.1038/nrc887
  12. Uslu, R., Sanli, U. A., Sezgin, C., Karabulut, B., Terzioglu, E., Omay, S. B., and Goker, E. "Arsenic Trioxide-mediated Cytotoxicity and Apoptosis in Prostate and Ovarian Carcinoma Cell Lines" Clin. Cancer Res. 6, 4957-4964 (2000).
  13. Dilda, P. J., and Hogg, P. J. "Arsenical-based cancer drugs" Cancer Treat. Rev. 33, 542-564 (2007). https://doi.org/10.1016/j.ctrv.2007.05.001
  14. You, E. -A., Ahn, R. W., Lee, M. H., Raja, M. R., O'Halloran, T. V., and Odom, T. W. "Size Control of Arsenic Trioxide Nanocrystals Grown in Nanowells" J. Am. Chem. Soc. 131, 10863-10865 (2009). https://doi.org/10.1021/ja902117b
  15. Ahn, R. W., Chen, F., Chen, H., Stern, S. T., Clogston, J. D., Patri, A. K., Raja, M. R., Swindell, E. P., Parimi, V., Cryns, V. L., and O'Halloran, T. V. "A Novel Nanoparticulate Formulation of Arsenic Trioxide with Enhanced Therapeutic Efficacy in a Murine Model of Breast Cancer" Clin. Cancer Res. 16, 3607-3617 (2010). https://doi.org/10.1158/1078-0432.CCR-10-0068
  16. Chen, H., MacDonald, R. C., Li, S., Krett, N. L., Rosen, S. T., and O'Halloran, T. V. "Lipid Encapsulation of Arsenic Trioxide Attenuates Cytotoxicity and Allows for Controlled Anticancer Drug Release" J. Am. Chem. Soc. 128, 13348-13349 (2006). https://doi.org/10.1021/ja064864h
  17. Lee, S. -M., Chen, H., Dettmer, C. M., O'Halloran, T. V., and Nguyen, S. T. "Polymer-Caged Liposomes: A pH-Responsive Delivery System with High Stability" J. Am. Chem. Soc. 129, 15096-15097 (2007). https://doi.org/10.1021/ja070748i
  18. Lee, S. -M., Chen, H., O'Halloran, T. V., and Nguyen, S. T. "'Clickable' Polymer-Caged Nanobins as a Modular Drug Delivery Platform" J. Am. Chem. Soc. 131, 9311-9320 (2009). https://doi.org/10.1021/ja9017336
  19. Donaldson, M., Antignani, A., Milner, J., Zhu, N., Wood, A., Cardwell-Miller, L., Changpriroa, C. M., and Jackson, S. H. "p47phox-deficient immune microenvironment signals dysregulate naive T-cell apoptosis" Cell Death Differ. 16, 125-138 (2009). https://doi.org/10.1038/cdd.2008.129
  20. Rostovtsev, V. V., Green, L. G., Fokin, V. V., and Sharpless, K. B. "A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective "Ligation" of Azides and Terminal Alkynes" Angew. Chem., Int. Ed. 41, 2596-2599 (2002). https://doi.org/10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4
  21. Saul, J. M., Annapragada, A., Natarajan, J. V., and Bellamkonda, R. V. "Controlled targeting of liposomal doxorubicin via the folate receptor in vitro" J. Control. Release 92, 49-67 (2003). https://doi.org/10.1016/S0168-3659(03)00295-5
  22. Lee, S. -M., Lee, O. -S., O'Halloran, T. V., Schatz, G. C., and Nguyen, S. T. "Triggered Release of Pharmacophores from [Ni($HAsO_3$)]-Loaded Polymer-Caged Nanobin Enhances Proapoptotic Activity: A Combined Experimental and Theoretical Study" ACS Nano 5, 3961-3969 (2011). https://doi.org/10.1021/nn200478m
  23. Nayak, S., and Lyon, L. A. "Soft Nanotechnology with Soft Nanoparticles" Angew. Chem., Int. Ed. 44, 7686-7708 (2005). https://doi.org/10.1002/anie.200501321
  24. Binder, W. H. "Polymer-Induced Transient Pores in Lipid Membranes" Angew. Chem., Int. Ed. 47, 3092-3095 (2008). https://doi.org/10.1002/anie.200800269
  25. Tannock, I. F., and Rotin, D. "Acid pH in Tumors and Its Potential for Therapeutic Exploitation" Cancer Res. 49, 4373-4384 (1989).
  26. Salnikow, K., Donald, S. P., Bruick, R. K., Zhitkovich, A., Phang, J. M., and Kasprzak, K. S. "Depletion of Intracellular Ascorbate by the Carcinogenic Metals Nickel and Cobalt Results in the Induction of Hypoxic Stress" J. Biol. Chem. 279, 40337-40344 (2004). https://doi.org/10.1074/jbc.M403057200
  27. Low, P. S., Henne, W. A., and Doorneweerd, D. D. "Discovery and Development of Folic-Acid-Based Receptor Targeting for Imaging and Therapy of Cancer and Inflammatory Diseases" Acc. Chem. Res. 41, 120-129 (2008). https://doi.org/10.1021/ar7000815
  28. Lee, R. J., and Low, P. S. "Delivery of liposomes into cultured KB cells via folate receptor- mediated endocytosis" J. Biol. Chem. 269, 3198-3204 (1994).